Applied sciences

Archives of Control Sciences


Archives of Control Sciences | 2018 | vol. 28 | No 3 |


We study the exact and approximate controllabilities of the Langevin equation describing the Brownian motion of particles with a white noise. The Langevin equation is shown to describe also the bacterial run-and-tumble motion. Applying the Green’s function approach to the Green’s function representation of the Langevin equation, we obtain necessary and sufficient conditions for exact controllability in the form of a finite-dimensional problem of moments. For the approximate controllability, we obtain only sufficient conditions. The sets of resolving controls are characterized in both cases. The theoretical derivations are supported by a numerical analysis.

Go to article


In the era of humanoid robotics, navigation and path planning of humanoids in complex environments have always remained as one of the most promising area of research. In this paper, a novel hybridized navigational controller is proposed using the logic of both classical technique and computational intelligence for path planning of humanoids. The proposed navigational controller is a hybridization of regression analysis with adaptive particle swarm optimization. The inputs given to the regression controller are in the forms of obstacle distances, and the output of the regression controller is interim turning angle. The output interim turning angle is again fed to the adaptive particle swarm optimization controller along with other inputs. The output of the adaptive particle swarm optimization controller termed as final turning angle acts as the directing factor for smooth navigation of humanoids in a complex environment. The proposed navigational controller is tested for single as well as multiple humanoids in both simulation and experimental environments. The results obtained from both the environments are compared against each other, and a good agreement between them is observed. Finally, the proposed hybridization technique is also tested against other existing navigational approaches for validation of better efficiency.

Go to article


In this paper, the PLC-based (Programmable Logic Controller) industrial implementation in the form of the general-purpose function block for ADRC (Active Disturbance Rejection Controller) is presented. The details of practical aspects are discussed because their reliable implementation is not trivial for higher order ADRC. Additional important novelties discussed in the paper are the impact of the derivative backoff and the method that significantly simplifies tuning of higher order ADRC by avoiding the usual trial and error procedure. The results of the practical validation of the suggested concepts complete the paper and show the potential industrial applicability of ADRC.

Go to article


The article presents the method and algorithm of automatic pointer measuring devices (voltmeter, manometer, metronomes etc.) indications determination in order to determine their dynamic characteristics with the help of web-camera and personal computer. The results of testing and experimental research of developed tool for determining the dynamic characteristics of pointer measuring devices are given. Using this method, the algorithm and the software developed, the process of determining the dynamic characteristics of the pointer measuring devices was automated. The time of recognition and calculation of one measured value for a dual-core processor and webcam with a resolution of 0.3 Mp averages 250–330 ms.

Go to article


The paper refers to planning deliveries of food products (especially those available in certain seasons) to the recipients: supermarket networks. The paper presents two approaches to solving problems of simultaneous selection of suppliers and transportation modes and construction of product flow schedules with these transportation modes. Linear mathematical models have been built for the presented solution approaches. The cost criterion has been taken into consideration in them. The following costs have been taken into account: purchase of products by individual recipients, transport services, storing of products supplied before the planned deadlines and penalties for delays in supply of products. Two solution approaches (used for transportation planning and selection of suppliers and selection of transportation modes) have been compared. The monolithic approach calls for simultaneous solutions for the problems of supplier selection and selection of transportation modes. In the alternative (hierarchical) solution approach, suppliers are selected first, and then transportation companies and their relevant transportation modes are selected. The results of computational experiments are used for comparison of the hierarchical and monolithic solution approaches.

Go to article


In the recent years, chaotic systems with uncountable equilibrium points such as chaotic systems with line equilibrium and curve equilibrium have been studied well in the literature. This reports a new 3-D chaotic system with an axe-shaped curve of equilibrium points. Dynamics of the chaotic system with the axe-shaped equilibrium has been studied by using phase plots, bifurcation diagram, Lyapunov exponents and Lyapunov dimension. Furthermore, an electronic circuit implementation of the new chaotic system with axe-shaped equilibrium has been designed to check its feasibility. As a control application, we report results for the synchronization of the new system possessing an axe-shaped curve of equilibrium points.

Go to article


In the paper the practical stability problem for the discrete, non-integer order model of one dimmensional heat transfer process is discussed. The conditions associating the practical stability to sample time and maximal size of finite-dimensional approximation of heat transfer model are proposed. These conditions are formulated with the use of spectrum decoposition property and practical stability conditions for scalar, positive, fractional order systems. Results are illustrated by a numerical example.

Go to article


In the presented paper, a problem of nonholonomic constrained mechanical systems is treated. New methods in nonholonomic mechanics are applied to a problem of a Forklift-truck robot motion. This method of the geometrical theory of general nonholonomic constrained systems on fibered manifolds and their jet prolongations, based on so-called Chetaev-type constraint forces. The relevance of this theory for general types of nonholonomic constraints, not only linear or affine ones, was then verified on appropriate models. On the other hand, the equations of motion of a Forklift-truck robot are highly nonlinear and rolling without slipping condition can only be expressed by nonholonomic constraint equations. In this paper, the geometrical theory is applied to the above mentioned mechanical problem. The results of numerical solutions of constrained equations of motion, derived within the theory, are presented.

Go to article

Editorial office

Editor-in-Chief prof. dr hab. inż. Andrzej Świerniak

Deputy/ Managing Editor
Zbigniew Ogonowski, Silesian University of Technology, Gliwice, Poland

Editorial Advisory Board

Andrzej Bargiela, University of Nottingham, UK
Roman Barták, Charles University, Prague, Czech Rep.
Jacek Błażewicz, Poznań University of Technology, Poland
Reggie Davidrajuh, University of Stavanger, Norway
Andreas Deutsch, Technische Universität Dresden, Germany
Moritz Diehl, University of Freiburg, Germany
Władysław Findeisen, Warsaw University of Technology, Poland
Marcelo D.Fragoso, LNCC/MCT, Rio de Janeiro, Brasil
Avner Friedman, MBI Ohio State University, Columbus, USA
Alberto Gandolfi, IASI, Rome, Italy
Ryszard Gessing, Silesian University of Technology, Gliwice, Poland
Henryk Górecki, AGH University of Science and Technology, Poland
David Greenhalgh, University of Strathclyde, Glasgow, UK
Mats Gyllenberg, University of Helsinki, Finland
Wassim M. Haddad, Georigia University, Atlanta, USA
Raimo P. Hämäläinen, Aalto University School of Science, Finland
Alberto Isidori, Università di Roma "La Sapienza" Italia
Laszlo Kevicky, Hungarian Academy of Sciences, Hungary
Marek Kimmel, Rice University Houston, USA
Jerzy Klamka, Silesian University of Technology, Gliwice, Poland
Józef Korbicz, University of Zielona Góra, Poland
Irena Lasiecka, University of Virginia, USA
Urszula Ledzewicz, Southern Illinois University at Edwardsville, USA
Magdi S Mahmoud, KFUM, Dahram, Saudi Arabia
Krzysztof Malinowski, Warsaw University of Technology, Poland
Wojciech Mitkowski, AGH University of Science and Technology, Poland
Bozenna Pasik-Duncan, University of Kansas, Lawrence, USA
Ian Postlethwaite, Newcastle University, Newcastle, UK
Eric Rogers, University of Southampton, UK
Heinz Schaettler, Washington University, St Louis, USA
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Jan Węglarz, Poznań University of Technology, Poland
Liu Yungang, Shandong University, PRC
Valery D. Yurkevich, Novosibirsk State Technical University, Russia


Institute of Automatic Control
Silesian University of Technology
Akademicka 16
44-101 Gliwice, Poland



Instructions for authors

Each paper submitted is subject to a review procedure, and the publication decision is based on reviers' comments on the paper. To avoid delay, please prepare the manuscript carefully following the suggestions listed below.

Computer file of the manuscript may be sent by e-mail to the address of Assistant Editor or Preferred text processors is TeX or LaTeX, however Word and other processors are also acceptable. In case of difficulties in processing the text, the author may be asked to supply the ASCII export of the original file.

Manuscripts sent via ordinary post should be typewritten double-spaced on one side of a standard size (A4) paper. Left side margin should be approximately 3cm (1.2'') wide. Each page should contain approximately 30 lines of 60 characters each. The manuscript including figures and tables together with their captions should be submitted. A separate signed letter giving the Author's preferred address for correspondence and return of proofs should be enclosed. Manuscript is the basis for editorial work.

First page should include the title of the paper, first name(s) and surname(s) of the Author(s), and a short summary (abstract), not longer than 20 lines.

Keywords of max. 5 - 7 items should be included in manuscript.

Numeration. All chapters, including the introduction, should be numbered in arabic numerals. Equations, tables and figures as well as theorems, corollaries, examples etc., should be numbered consecutively throughout the paper in arabic numerals, except in appendices. Appendices should be numbered with capital letters, and numeration should be closed within individual appendices.

If the manuscript is not prepared with TeX, mathematical expressions should be carefully written so as not to arouse confusion. Care should be taken that subscripts and superscripts are easily readable.

Tables and figures should be placed as desired by the Author within the text or on separate sheets with their suggested location indicated by the number of table or figure in the text. Figures, graphs and pictures (referred to as Fig. in the manuscript) should be numbered at the beginning of their caption following the figure. All figures should be prepared as PostScript EPS files or LaTeX picture files; in special cases, bitmaps of figure are also acceptable. The numbers and titles of tables should be placed above the main body of each table.

References should be listed alphabetically at the end of the manuscript. They should be numbered in ascending order and the numbers should be inserted in square brackets. References should be organized as follows. First initial(s), surname(s) of the author(s) and title of article or book. Then, for papers: title of periodical or collective work, volume number (year of issue), issue number, and numbers of the first and the last page; for books: publisher's name(s), place and year of issue. Example:

  1. R. E. Kalman: Mathematical description of linear dynamical system. SIAM J. Control. 1(2), (1963), 152-192.
  2. F. C. Shweppe: Uncertain dynamic systems. Prentice-Hall, Englewood Cliffs, N.J. 1970.

Please, give full titles of journals; only common words like Journal, Proceedings, Conference, etc. may be abbreviated ( to J., Proc., Conf., ... respectively). References to publications in the body of the manuscript should be indicated by the numbers of the adequate references in square brackets. When the paper is set in TeX the preferable form of preparing references is Bib TeX bib database.

Footnotes should be placed in the manuscript, beginning with "Received..." (date to be filled in by Editor), the author's institutional affiliation and acknowledgement of financial support,, and continuing with numbered references. The number of footnotes should be held to a minimum.

List of symbols containing definitions of all symbols used, enclosed to the manuscript on a separate sheet, is required when the paper is not set in TeX and welcome in other cases.

Reprints. 10 reprints of each paper will be provided free of charge.

Submission of a paper implies the Author's irrevocable and exclusive authorization of the publisher to collect any sums or considerations for copying or reproduction payable by third parties.

Papers should be sent to:

Zbigniew Ogonowski
Institute of Automatic Control
Silesian University of Technology
Akademicka 16
44-101 Gliwice, Poland

This page uses 'cookies'. Learn more