Applied sciences

Archives of Control Sciences


Archives of Control Sciences | 2016 | No 1 |

Download PDF Download RIS Download Bibtex


The modulus optimum (MO) criterion can be used for analytical design of the PID controller for linear systems with dominant dead time. However, although the method usually gives fast and non-oscillating closed-loop responses, in the case of large dead time the stability margin gets reduced and even non-stable behavior can be observed. In this case a correction of the settings is needed to preserve the stability margin. We describe and compare two methods of design of the PID controller based on the MO criterion that for the stable first-order systems with dead time preserve the stability margin, trying to keep maximum of the performance of the original MO settings.
Go to article

Authors and Affiliations

Jan Cvejn
Download PDF Download RIS Download Bibtex


This paper announces an eight-term novel 3-D jerk chaotic system with three quadratic nonlinearities. The phase portraits of the novel jerk chaotic system are displayed and the qualitative properties of the jerk system are described. The novel jerk chaotic system has two equilibrium points, which are saddle-foci and unstable. The Lyapunov exponents of the novel jerk chaotic system are obtained as L1 = 0.20572,L2 = 0 and L3 = −1.20824. Since the sum of the Lyapunov exponents of the jerk chaotic system is negative, we conclude that the chaotic system is dissipative. The Kaplan-Yorke dimension of the novel jerk chaotic system is derived as DKY = 2.17026. Next, an adaptive controller is designed via backstepping control method to globally stabilize the novel jerk chaotic system with unknown parameters. Moreover, an adaptive controller is also designed via backstepping control method to achieve global chaos synchronization of the identical jerk chaotic systems with unknown parameters. The backstepping control method is a recursive procedure that links the choice of a Lyapunov function with the design of a controller and guarantees global asymptotic stability of strict feedback systems. MATLAB simulations have been depicted to illustrate the phase portraits of the novel jerk chaotic system and also the adaptive backstepping control results.
Go to article

Authors and Affiliations

Sundarapandian Vaidyanathan
Download PDF Download RIS Download Bibtex


In the article solution of the problem of extremal value of x(τ) is presented, for the n-th order linear systems. The extremum of x(τ) is considered as a function of the roots s1, s2, ... sn of the characteristic equation. The obtained results give a possibility of decomposition of the whole n-th order system into a set of 2-nd order systems.
Go to article

Authors and Affiliations

Henryk Górecki
Mieczysław Zaczyk
Download PDF Download RIS Download Bibtex


The coexistence of anti-synchronization and synchronization in chaotic systems is investigated. A novel algorithm is proposed to determine the variables of the master system that should anti-synchronize with corresponding variables of the slave system. Control strategies that guarantee the coexistence of synchronization and anti-synchronization in the unified chaotic system are presented; while numerical simulations are employed to validate and illustrate the effectiveness of the proposed method.
Go to article

Authors and Affiliations

Ling Ren
Rongwei Guo
Uchechukwu E. Vincent
Download PDF Download RIS Download Bibtex


In the paper a Lyapunov matrices approach to the parametric optimization problem of a neutral system with a P-controller is presented. The value of integral quadratic performance index of quality is equal to the value of Lyapunov functional for the initial function of the neutral system. The Lyapunov functional is determined by means of the Lyapunov matrix.
Go to article

Authors and Affiliations

Jozef Duda
Download PDF Download RIS Download Bibtex


In this paper a novel 3-D nonlinear finance chaotic system consisting of two nonlinearities with negative saving term, which is called ‘dissaving’ is presented. The dynamical analysis of the proposed system confirms its complex dynamic behavior, which is studied by using wellknown simulation tools of nonlinear theory, such as the bifurcation diagram, Lyapunov exponents and phase portraits. Also, some interesting phenomena related with nonlinear theory are observed, such as route to chaos through a period doubling sequence and crisis phenomena. In addition, an interesting scheme of adaptive control of finance system’s behavior is presented. Furthermore, the novel nonlinear finance system is emulated by an electronic circuit and its dynamical behavior is studied by using the electronic simulation package Cadence OrCAD in order to confirm the feasibility of the theoretical model.
Go to article

Authors and Affiliations

Ourania I. Tacha
Christos K. Volos
Ioannis N. Stouboulos
Ioannis M. Kyprianidis
Download PDF Download RIS Download Bibtex


The objective of this paper is to present a modified structure and a training algorithm of the recurrent Elman neural network which makes it possible to explicitly take into account the time-delay of the process and a Model Predictive Control (MPC) algorithm for such a network. In MPC the predicted output trajectory is repeatedly linearized on-line along the future input trajectory, which leads to a quadratic optimization problem, nonlinear optimization is not necessary. A strongly nonlinear benchmark process (a simulated neutralization reactor) is considered to show advantages of the modified Elman neural network and the discussed MPC algorithm. The modified neural model is more precise and has a lower number of parameters in comparison with the classical Elman structure. The discussed MPC algorithm with on-line linearization gives similar trajectories as MPC with nonlinear optimization repeated at each sampling instant.
Go to article

Authors and Affiliations

Antoni Wysocki
Maciej Ławryńczuk

Editorial office

Editor-in-Chief prof. dr hab. inż. Andrzej Świerniak

Deputy/ Managing Editor
Zbigniew Ogonowski, Silesian University of Technology, Gliwice, Poland

Editorial Advisory Board

Andrzej Bargiela, University of Nottingham, UK
Roman Barták, Charles University, Prague, Czech Rep.
Jacek Błażewicz, Poznań University of Technology, Poland
Reggie Davidrajuh, University of Stavanger, Norway
Andreas Deutsch, Technische Universität Dresden, Germany
Moritz Diehl, University of Freiburg, Germany
Władysław Findeisen, Warsaw University of Technology, Poland
Marcelo D.Fragoso, LNCC/MCT, Rio de Janeiro, Brasil
Avner Friedman, MBI Ohio State University, Columbus, USA
Alberto Gandolfi, IASI, Rome, Italy
Ryszard Gessing, Silesian University of Technology, Gliwice, Poland
Henryk Górecki, AGH University of Science and Technology, Poland
David Greenhalgh, University of Strathclyde, Glasgow, UK
Mats Gyllenberg, University of Helsinki, Finland
Wassim M. Haddad, Georigia University, Atlanta, USA
Raimo P. Hämäläinen, Aalto University School of Science, Finland
Alberto Isidori, Università di Roma "La Sapienza" Italia
Laszlo Kevicky, Hungarian Academy of Sciences, Hungary
Marek Kimmel, Rice University Houston, USA
Jerzy Klamka, Silesian University of Technology, Gliwice, Poland
Józef Korbicz, University of Zielona Góra, Poland
Irena Lasiecka, University of Virginia, USA
Urszula Ledzewicz, Southern Illinois University at Edwardsville, USA
Magdi S Mahmoud, KFUM, Dahram, Saudi Arabia
Krzysztof Malinowski, Warsaw University of Technology, Poland
Wojciech Mitkowski, AGH University of Science and Technology, Poland
Bozenna Pasik-Duncan, University of Kansas, Lawrence, USA
Ian Postlethwaite, Newcastle University, Newcastle, UK
Eric Rogers, University of Southampton, UK
Heinz Schaettler, Washington University, St Louis, USA
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Jan Węglarz, Poznań University of Technology, Poland
Liu Yungang, Shandong University, PRC
Valery D. Yurkevich, Novosibirsk State Technical University, Russia


Institute of Automatic Control
Silesian University of Technology
Akademicka 16
44-101 Gliwice, Poland



Instructions for authors

Each paper submitted is subject to a review procedure, and the publication decision is based on reviers' comments on the paper. To avoid delay, please prepare the manuscript carefully following the suggestions listed below.

Computer file of the manuscript may be sent by e-mail to the address of Assistant Editor or Preferred text processors is TeX or LaTeX, however Word and other processors are also acceptable. In case of difficulties in processing the text, the author may be asked to supply the ASCII export of the original file.

Manuscripts sent via ordinary post should be typewritten double-spaced on one side of a standard size (A4) paper. Left side margin should be approximately 3cm (1.2'') wide. Each page should contain approximately 30 lines of 60 characters each. The manuscript including figures and tables together with their captions should be submitted. A separate signed letter giving the Author's preferred address for correspondence and return of proofs should be enclosed. Manuscript is the basis for editorial work.

First page should include the title of the paper, first name(s) and surname(s) of the Author(s), and a short summary (abstract), not longer than 20 lines.

Keywords of max. 5 - 7 items should be included in manuscript.

Numeration. All chapters, including the introduction, should be numbered in arabic numerals. Equations, tables and figures as well as theorems, corollaries, examples etc., should be numbered consecutively throughout the paper in arabic numerals, except in appendices. Appendices should be numbered with capital letters, and numeration should be closed within individual appendices.

If the manuscript is not prepared with TeX, mathematical expressions should be carefully written so as not to arouse confusion. Care should be taken that subscripts and superscripts are easily readable.

Tables and figures should be placed as desired by the Author within the text or on separate sheets with their suggested location indicated by the number of table or figure in the text. Figures, graphs and pictures (referred to as Fig. in the manuscript) should be numbered at the beginning of their caption following the figure. All figures should be prepared as PostScript EPS files or LaTeX picture files; in special cases, bitmaps of figure are also acceptable. The numbers and titles of tables should be placed above the main body of each table.

References should be listed alphabetically at the end of the manuscript. They should be numbered in ascending order and the numbers should be inserted in square brackets. References should be organized as follows. First initial(s), surname(s) of the author(s) and title of article or book. Then, for papers: title of periodical or collective work, volume number (year of issue), issue number, and numbers of the first and the last page; for books: publisher's name(s), place and year of issue. Example:

  1. R. E. Kalman: Mathematical description of linear dynamical system. SIAM J. Control. 1(2), (1963), 152-192.
  2. F. C. Shweppe: Uncertain dynamic systems. Prentice-Hall, Englewood Cliffs, N.J. 1970.

Please, give full titles of journals; only common words like Journal, Proceedings, Conference, etc. may be abbreviated ( to J., Proc., Conf., ... respectively). References to publications in the body of the manuscript should be indicated by the numbers of the adequate references in square brackets. When the paper is set in TeX the preferable form of preparing references is Bib TeX bib database.

Footnotes should be placed in the manuscript, beginning with "Received..." (date to be filled in by Editor), the author's institutional affiliation and acknowledgement of financial support,, and continuing with numbered references. The number of footnotes should be held to a minimum.

List of symbols containing definitions of all symbols used, enclosed to the manuscript on a separate sheet, is required when the paper is not set in TeX and welcome in other cases.

Reprints. 10 reprints of each paper will be provided free of charge.

Submission of a paper implies the Author's irrevocable and exclusive authorization of the publisher to collect any sums or considerations for copying or reproduction payable by third parties.

Fees. No honorarium will be paid. The journal does not have article processing charges (APCs) nor article submission charges

Papers should be sent to:

Zbigniew Ogonowski
Institute of Automatic Control
Silesian University of Technology
Akademicka 16
44-101 Gliwice, Poland

Open Access policy

Archives of Control Sciences jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 3.0.

Archives of Control Sciences is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 3.0

This page uses 'cookies'. Learn more