Applied sciences

Archive of Mechanical Engineering

Content

Archive of Mechanical Engineering | Ahead of print |

Download PDF Download RIS Download Bibtex

Abstract

For a deeper understanding of the inner ear dynamics, a Finite-Element model of the human cochlea is developed. To describe the unsteady, viscous creeping flow of the liquid, a pressure-displacement-based Finite-Element formulation is used. This allows one to efficiently compute the basilar membrane vibrations resulting from the fluid-structure interaction leading to hearing nerve stimulation. The results show the formation of a travelingwave on the basilar membrane propagating with decreasing velocity towards the peaking at a frequency dependent position. This tonotopic behavior allows the brain to distinguish between sounds of different frequencies. Additionally, not only the middle ear, but also the transfer behavior of the cochlea contributes to the frequency dependence of the auditory threshold. Furthermore, the fluid velocity and pressure fields show the effect of viscous damping forces and allow us to deeper understand the formation of the pressure difference, responsible to excite the basilar membrane.

Go to article

Authors and Affiliations

Philipp Wahl
Pascal Ziegler
Peter Eberhard
Download PDF Download RIS Download Bibtex

Abstract

System identification is an approach for parameter detection and mathematical model determination using response signals of a dynamic system. Two degrees of freedom (2DOF) pendulum controlled by a QUBE-servo motor is a great experiment device to work with; though it is not easy to control this system due to its complex structure and multi-dimensional outputs. Hence, system identification is required for this system to analyze and evaluate its dynamic behaviors. This paper presents a methodology for identifying a 2DOF pendulum and its dynamic behaviors including noise from an encoder cable. Firstly, all parameters from both mechanical and electrical sides of the QUBE-servo motor are analyzed. Secondly, a mathematical model and identified parameters for the 2DOF pendulum are illustrated. Finally, disturbances from encoder cable of the QUBE-servo motor which introduce an unwanted oscillation or self-vibration in this system are introduced. The effect of itself on output response signals of the 2DOF QUBE-pendulum is also discussed. All identified parameters are checked and verified by a comparison between a theoretical simulation and experimental results. It is found that the disturbance from encoder cable of the 2DOF QUBE-pendulum is not negligible and should be carefully considered as a certain factor affecting response of system.

Go to article

Authors and Affiliations

Hoai Nam Le
Phuoc Vinh Dang
Anh-Duc Pham
Nhu Thanh Vo
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a comprehensive study is carried out on the dynamic behaviour of Euler–Bernoulli and Timoshenko beams resting on Winkler type variable elastic foundation. The material properties of the beam and the stiffness of the foundation are considered to be varying along the length direction. The free vibration problem is formulated using Rayleigh-Ritz method and Hamilton’s principle is applied to generate the governing equations. The results are presented as non-dimensional natural frequencies for different material gradation models and different foundation stiffness variation models. Two distinct boundary conditions viz., clamped-clamped and simply supported-simply supported are considered in the analysis. The results are validated with existing literature and excellent agreement is observed between the results.

Go to article

Authors and Affiliations

Saurabh Kumar

Editorial office

Editor-in-Chief

Prof. Marek Wojtyra, Warsaw University of Technology, Poland

 

Editorial Board

Prof. Krzysztof Arczewski, Warsaw University of Technology, Poland

Prof. Janusz T. Cieśliński, Gdańsk University of Technology, Poland

Prof. Antonio Delgado, LSTM University of Erlangen-Nuremberg, Germany

Prof. Peter Eberhard, University of Stuttgart, Germany

Prof. Jerzy Maciej Floryan, The University of Western Ontario, Canada

Prof. Janusz Frączek, Warsaw University of Technology, Poland

Prof. Zbigniew Kowalewski, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Zenon Mróz, Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland

Prof. Andrzej J. Nowak, Silesian University of Technology, Poland

Dr. Andrzej F. Nowakowski, The University of Sheffield, United Kingdom

Prof. Jerzy Sąsiadek, Carleton University, Canada

Prof. Jacek Szumbarski, Warsaw University of Technology, Poland

Prof. Tomasz Wiśniewski, Warsaw University of Technology, Poland

Prof. Günter Wozniak, Chemnitz University of Technology, Germany

 

Assistant to the Editor

Małgorzata Broszkiewicz, Warsaw University of Technology, Poland

 

Editorial Advisory Board

Prof. Alberto Carpinteri, Politecnico di Torino, Italy

Prof. Fernand Ellyin, University of Alberta, Canada

Prof. Feng Gao, Shanghai Jiao Tong University, P.R. China

Prof. Emmanuel E. Gdoutos, Democritus University of Thrace, Greece

Prof. Gregory Glinka, University of Waterloo, Ontario, Canada

Prof. Andrius Marcinkevicius, Vilnius Gedeminas Technical University, Lithuania

Prof. Manuel José Moreira De Freitas, Instituto Superior Tecnico, Portugal

Prof. Andrzej Neimitz, Kielce University of Technology, Poland

Prof. Thierry Palin-Luc, Arts et Métiers ParisTech, Institut Carnot Arts, France

Prof. Andre Pineau, Centre des Matériaux, Ecole des Mines de Paris, France

Prof. Narayanaswami Ranganathan, LMR, Ecole Polytechnique de l'Université de Tours, France

Prof. Jan Ryś, Cracow University of Technology, Poland

Prof. Adelia Sequeira, Technical University of Lisbon, Portugal,

Prof. Józef Szala, University of Technology and Life Sciences in Bydgoszcz, Poland

Prof. Edmund Wittbrodt, Gdańsk University of Technology, Poland

Prof. Jens Wittenburg, Karlsruhe Institute of Technology, Germany

Prof. Stanisław Wojciech, University of Bielsko-Biała, Poland

 

Language Editor

Lech Śliwa, Institute of Physiology and Pathology of Hearing, Warsaw, Poland

  

Contact

ARCHIVE OF MECHANICAL ENGINEERING

Editorial Office:

Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology

Nowowiejska 24, Room 132, 00-665 Warsaw, Poland

Phone:  (+48) 22 234 7448, fax: (+48) 22 628 25 87,

E-mail: ame.eo@meil.pw.edu.pl

https://www.editorialsystem.com/ame

www.journals.pan.pl/ame

Instructions for authors

About the Journal
Archive of Mechanical Engineering is an international journal publishing works of wide significance, originality and relevance in most branches of mechanical engineering. The journal is peer-reviewed and is published both in electronic and printed form. Archive of Mechanical Engineering publishes original papers which have not been previously published in other journal, and are not being prepared for publication elsewhere. The publisher will not be held legally responsible should there be any claims for compensation. The journal accepts papers in English.

Archive of Mechanical Engineering is an Open Access journal. The journal does not have article processing charges (APCs) nor article submission charges.

Original high quality papers on the following topics are preferred:

  • Mechanics of Solids and Structures,
  • Fluid Dynamics,
  • Thermodynamics, Heat Transfer and Combustion,
  • Machine Design,
  • Computational Methods in Mechanical Engineering,
  • Robotics, Automation and Control,
  • Mechatronics and Micro-mechanical Systems,
  • Aeronautics and Aerospace Engineering,
  • Heat and Power Engineering.

All submissions to the AME should be made electronically via Editorial System - an online submission and peer review system at: https://www.editorialsystem.com/ame

More detailed instructions for Authors can be found there.

Open Access policy

Archive of Mechanical Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0. https://creativecommons.org/licenses/by-nc-nd/4.0/

Archive of Mechanical Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/.

This page uses 'cookies'. Learn more