Applied sciences

Archives of Thermodynamics

Content

Archives of Thermodynamics | 2010 | No 1 March |

Abstract

We describe the development of a new type of heat exchanger. This heat exchanger operates using reverse thermosiphon action and consists of a self-acting and self-controlled liquid circulation loop with heat transfer in a downward direction, opposite to the direction of natural convection. This process moves a heat-carrying hot liquid downwards with the help of local heat transferred through the loop. This flow loop is partly filled with liquid and the upper part of the loop contains vapour from the liquid heat-carrier. The pressure difference in the saturated vapour is used to move the heated liquid downwards. The principles of action and the possibility of developing such a device using laboratory experimental methods are presented.

Go to article

Abstract

In this work, numerical modeling of steady state heat and mass transfer is presented. Both laminar and hydrodynamically fully developed turbulent flow in a pipe are shown. Numerical results are compared with values obtained from analytical solution of such problems. The problems under consideration are often denoted as extended Graetz problems. They occur in heat exchangers using liquid metals as working fluid, in cooling systems for electric components or in chemical process lines. Calculations were carried out gradually decreasing the mesh size in order to examine the convergence of numerical method to analytical solution.

Go to article

Abstract

The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.

Go to article

Abstract

In this paper, an algorithm will be presented that enables solving the two-phase inverse Stefan problem, where the additional information consists of temperature measurements in selected points of the solid phase. The problem consists in the reconstruction of the function describing the heat transfer coefficient, so that the temperature in the given points of the solid phase would differ as little as possible from the predefined values. The featured examples of calculations show a very good approximation of the exact solution and stability of the algorithm.

Go to article

Abstract

The paper presents the results of a simulative thermodynamic analysis of a multifuel CHP plant basing on the technological diagram of Avedøre 2. Calculations have been carried out for the operation of Avedøre 2 plant in the district heating mode. Several variants of simulation have been considered, determined by the choice of operation of the respective plants, viz. main boiler fired with natural gas, main and biomass boiler, main boiler and GT plant, joint operation of the main and biomass boiler and GT plant, main boiler (fired with heavy fuel oil or/and wood chips) and biomass boiler and GT plant. For each variants a diagram of iso-fuel curves has been developed, illustrating the variability of useful effects (power output and district heat) at various loads of the CHP steam part. In case of the variant in which the main boiler and GT are in operation with natural gas as fuel the exemplary energy indices were determined.

Go to article

Editorial office

Honorary Editor
Wiesław Gogół, Warsaw University of Technology, Poland

Editor-in-Chief
Jarosław Mikielewicz, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Deputy
Marian Trela, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

Members of Editorial Commitee
Roman Domanski, Warsaw University of Technology, Poland
Andrzej Ziębik, Technical University of Silesia, Poland

Managing Editor
Jarosław Frączak, The Szewalski Institute of Fluid-Flow Machinery PAS, Poland

International Advisory Board
J. Bataille, Ecole Central de Lyon, Ecully, France
A. Bejan, Duke University,  Durham, USA
W. Blasiak, Royal Institute of Technology,  Stockholm, Sweden
G. P. Celata, ENEA,  Rome, Italy
M. W. Collins, South Bank University,  London, UK
J. M. Delhaye, CEA, Grenoble, France
M. Giot, Université Catholique de Louvain, Belgium
D. Jackson, University of Manchester, UK
S. Michaelides, University of North Texas, Denton, USA
M. Moran, Ohio State University,  Columbus, USA
W. Muschik, Technische Universität, Berlin, Germany
I. Müller, Technische Universität, Berlin, Germany
V. E. Nakoryakov, Institute of Thermophysics, Novosibirsk, Russia
M. Podowski, Rensselaer Polytechnic Institute, Troy, USA
M.R. von Spakovsky, Virginia Polytechnic Institute and State University, Blacksburg, USA

Contact

IFFM Publishers (Wydawnictwo IMP),

The Szewalski Institute of Fluid-Flow Machinery,
Fiszera 14, 80-952 Gdańsk, Poland,
telephone: +48 58 6995141, fax: +48 58 3416144,
e-mail: jfrk@imp.gda.pl; now@imp.gda.pl

 

 

Instructions for authors

Archives of Thermodynamics publishes original papers which have not previously appeared in other journals. The language of the papers is English. No paper should exceed the length of 25 pages. All pages should be numbered. The plan and form of the papers should be as follows:
 

1. The heading should specify the title (as short as possible), author, his/her complete affiliation, town, zip code, country and e-mail. Please show the corresponding author. The heading should be followed by Abstract of maximum 15 typewritten lines.

2. More important symbols used in the paper can be listed in Nomenclature, placed below Summary and arranged in a column, e.g.:
u – velocity, m/s
v – specific volume, m/kg
etc.
The list should begin with Latin symbols in alphabetical order followed by Greek symbols also in alphabetical order and with a separate heading. Subscripts and superscripts should follow Greek symbols and should be identified with separate headings. Physical quantities should expressed in SI units.

3. The equations should be each in a separate line. The numbers of the equations should run on, irrespective of the division of the paper into sections. The numbers should be given in round brackets on the right-hand side of the page.
 
4. Particular attention should be paid to the differentiation between capital and small letters. If there is a risk of confusion, the symbols should be explained (for example small c) in the margins. Indices of more than one level (such as Bfa ) should be avoided wherever possible.

5. Computer-generated figures should be produced using pretty bold lines and characters. No remarks should be written directly on the figures, except numerals or letter symbols only, the relevant explanations given below in the caption.
 
6. The figures, including photographs, diagrams etc., should be numbered with Arabic numerals in the same order in which they appear in the text.

7. Computer files on an enclosed disc or sent by e-mail to the Editorial Office are welcome. The manuscript should be written as a Word file – ¤:doc or LATEX file –¤:tex.
 
8. The references for the paper should be numbered in the order in which they are called in the text. Calling the references is by giving the appropriate numbers in square brackets. The references should be listed with the following information provided: the author’s surname and the initials of his/her names, the complete title of the work (in English translation) and, in addition:
 
(a) for books: the publishing house and the place and year of publication, for example:
`1` Holman J.P.: Heat Transfer. McGraw-Hill, New York 1968.
 
(b) for journals: the name of the journal, volume (Arabic numerals in bold), year of publication (in round brackets), number and, if appropriate, numbers of relevant pages, for example: 
`2` Rizzo F.I., Shippy D.I.: A method of solution for certain problems of transient heat conduction.
AIAA Journal 8(1970), No. 11, 2004–2009.
 
9. As the papers are published in English, the authors who are not native speakers of English are obliged to have the paper thoroughly reviewed language-wise before submitting for publication.

This page uses 'cookies'. Learn more