Applied sciences

Archives of Civil Engineering

Content

Archives of Civil Engineering | 2020 | Vol. 66 | No 2 |

Download PDF Download RIS Download Bibtex

Abstract

When a truck impacts on a reinforced concrete (RC) column such as a bridge pier at a high velocity, a large reaction force would generate which would damage the truck, hurt the passengers and destroy the column. Lightweight foams with excellent energy absorbing performance are often used as safeguard constructions to resist impact. The impact behavior can be divided into soft and hard impact. In the case of soft impact, the impacted structure deformation is predominant. In the paper, metallic foam safeguarded RC square columns impacted by a rigid block are simulated using the ABAQUS code software, and the influential characteristic of foam density on the peak impact force and ultimate energy absorption is focused on. The simulated results indicate that the foam safeguard constructions play remarkable role on impact resistance. It is exciting that there appears almost an identical critical foam density corresponding to the minimum peak force and the ultimate energy absorption, which is of great significance for engineering design of this type of safeguard constructions to resist impact.

Go to article

Authors and Affiliations

Z.Y. Xie
Download PDF Download RIS Download Bibtex

Abstract

Predicting the aging process of residential buildings carried out using traditional technologies is necessary when planning refurbishment works in these buildings. The article presents a picture of the changes in the technical condition of a not refurbished building constructed in traditional technology, in the form of a function describing the aging process according to the PRRD (Prediction of Reliability according to Rayleigh Distribution) model developed by the author. The results of analyses of the relationships between the function of the intensity of damage and the function of unreliability, as well as the function of changes in the performance characteristics of a building which had not undergone refurbishment during the entire course of its use are presented. Three levels of damage intensity during subsequent years of using the building were determined: safe, critical and unacceptable intensity.

Go to article

Authors and Affiliations

Beata Nowogońska
Download PDF Download RIS Download Bibtex

Abstract

The selection of the most proper strengthening method/system with an assessment of its effectiveness is quite complicated in the case of masonry structures, mainly due to their huge diversity in materials. The most popular strengthening materials based on the composite fibres and are laid on the masonry wall using epoxy adhesives (FRP system) or mineral mortars (FRCM system). This article presents a comparison of external strengthening made using different glass-fibre-based materials on the behaviour of specific masonry walls. The walls are made of AAC blocks (Autoclaved Aerated Concrete), commonly used in rather low urban buildings or skeleton construction. As a strengthening material the GFRP sheets and two types of glass meshes are used. The walls are subjected to diagonal compression, which reflects the shearing of the walls. The scope of research describes cracking stage, shear capacity and analysis of the mode of failure of tested walls.

Go to article

Authors and Affiliations

Marta Kałuża
Download PDF Download RIS Download Bibtex

Abstract

Natural airfield pavements divide into soil and turf pavements. Turf pavement is a soil pavement covered with a developed grass layer that reduce soil moisture level, thus increasing its' resistance and extending exploitation period. Natural airfield pavements are formed through appropriate ground preparation. This pavement should be constructed in such a way as to have sufficient load-bearing capacity, which directly affects the safety of flight operations by aircraft. The current research indicates that a significant part of natural airfield pavements in Poland does not meet the requirements for load bearing capacity and require reinforcing. The article provides an example of reinforcing the natural airfield pavement with a system of geogrids. The paper describes what research was performed in order to measure the load-bearing capacity of natural airfield pavements and analyses the obtained results.

Go to article

Authors and Affiliations

Mariusz Wesołowski
Agata Kowalewska
Download PDF Download RIS Download Bibtex

Abstract

The performance-based analysis of the large-space steel sports hall is presented. Load-bearing structure of the hall consists of spatial long-span truss girders that are made of modern square hollow sections. Both fire development analysis and mechanical response analysis are discussed in detail. Fire Dynamics Simulator and Safir programs are used. Main focus is put on the factors that could affect the final fire resistance of the structure. Uniform and non-uniform heating, different boundary conditions and local imperfections are taken into account. Structures with and without fireproof insulation are considered. Values of the critical temperature, failure modes and fire resistance estimated for various cases are presented. Computer simulations were carried out both for fire growth and decay phase. As a result it is clearly shown that some reductions of the required fireproof insulation are possible. Moreover, the structure without complete traditional fireproof insulation is able to survive not only the direct fire exposure but also the cooling phase.

Go to article

Authors and Affiliations

Piotr Woźniczka
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of research carried out in construction companies among employees involved in the organisation and management of construction projects. The research concerned factors and their impact on decisions regarding the planning of quantitative employment workforce at a construction site. Based on individual assessments of individual factors, average assessments were calculated and hierarchies of the factors examined were made. In the second part of the article, the dispersion coefficient of relative classification was used to assess the reliability of the opinions collected. The content presented is a continuation of the work of the authors on the subject of employment planning at the construction site.

Go to article

Authors and Affiliations

Edyta Plebankiewicz
Agnieszka Leśniak
Patrycja Karcińska
Download PDF Download RIS Download Bibtex

Abstract

In the article, the authors presented the results of microbiological air quality studies in selected buildings with additional thermal insulation applied from the inside using a silicate and lime system, as well as the results of a survey study concerning the comfort of use of said buildings. The microbiological air quality studies, conducted in buildings immediately prior to and after the application of additional thermal insulation using silicate and lime sheets, demonstrated a significant decrease in the number of mould spores in interior spaces. This was also reflected in the results of a survey study. The survey study was conducted with users of public and commercial buildings and municipal housing buildings in Krakow. Thanks to the additional insulation applied from inside using the silicate and lime system, all of the utilitarian parameters of internal spaces had improved. The most significant changes concerned parameters like comfort of use, the aesthetic of the spaces and breathing comfort. According to experts, the silicate and lime system was also rated highly in terms of the analysed parameters.

Go to article

Authors and Affiliations

Elżbieta Radziszewska-Zielina
Piotr Czerski
Wojciech Grześkowiak
Patrycja Kwaśniewska-Sip
Download PDF Download RIS Download Bibtex

Abstract

The scope of the paper is to determine the mechanical properties of the Precontraint 1302 polyester coated fabric under uniaxial and biaxial tensile tests. The results are compared for Precontraint 1302 fabric and other types of coated fabrics. The author applied an orthotropic model and a dense net model to reflect the polyester coated fabric performance under uniaxial and biaxial tensile tests. Material parameters are specified for both constitutive models. In order to observe the variation of immediate mechanical properties, the biaxial cyclic tests are performed for different load ratios. During uniaxial and 1:1 biaxial tensile tests it is barely observable to recognize warp or weft directions on the stress-strain curves. Load history acts strongly on the mechanical properties of the Precontraint 1302 polyester fabrics. The cyclic loads cause variation of immediate longitudinal stiffness with a comparison of values determined for unloaded coated fabrics. The paper can provide scientists, engineers, and designers an experimental and theoretical basis in the field of polyester coated fabrics.

Go to article

Authors and Affiliations

Andrzej Ambroziak
Download PDF Download RIS Download Bibtex

Abstract

Confinement in concrete can improve the descending branch of the stress-strain relationship of concrete. The addition of steel fiber in concrete can also improve the descending branch of the stress-strain relationship of concrete. The combination of the use of both can double the impact significantly on the post-peak response. It can be seen from the trend of the post-peak response that the values of both 0.85fccf and 0.5fccf can be well predicted. The study involved an experimental investigation on the effect of confinement on square column specimens reinforced with steel fiber. From the experimental program, it is proven that the use of combination of confining steel and steel fiber works very well which is indicated by the better improvement on the post-peak response. The proposed equations can predict the actual stress-strain curves quite accurately which include the effects of confinement parameters (Zm) and steel fiber volumetric parameter (Vf).

Go to article

Authors and Affiliations

Bambang Sabariman
Agoes Soehardjono
Wisnumurti
Ari Wibowo
Tavio
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an approach to identify the state of fine sands on the basis of shear wave velocity measurement. Large body of experimental data was used to derive formulae which relate void ratio with shear wave velocity and mean effective stress for a given material. Two fine sands which contained 8 and 14% of fines were tested. The soils were tested in triaxial tests. Sands specimens were reconstituted in triaxial cell. In order to obtain predetermined void ratio values covering possible widest range of the parameter representing a very loose and dense state as well, the moist tamping method with use of undercompaction technique was adopted. Fully saturated soil underwent staged consolidation at the end of which shear wave velocity was measured. Since volume control of a specimen was enhanced by use of proximity transducers, representative 3 elements sets (i.e. void ratio e, mean effective stress p’ and shear wave velocity VS) describing state of material were obtained. Analysis of the test results revealed that relationship between shear wave velocity and mean effective stress p' can be approximated by power function in distinguished void ratio ranges. This made possible to derive formula for calculating void ratio for a given state of stress on the basis of shear wave velocity measurement. The conclusion concerning sensitivity of this approach to the fines content was presented.

Go to article

Authors and Affiliations

Mirosław J. Lipiński
Małgorzata K. Wdowska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of structural monitoring with the use of angular displacement measurements performed with inclinometer devices. Inclinometer method is a solution free from the basic disadvantages of optical methods used commonly in structural monitoring, such as sensitivity to any type of visibility restrictions, pollution or influence of weather conditions. At the same time, with appropriate sensor parameters, a much better measurement accuracy is obtained than for typical optical methods and very low energy demand and moderate costs are achieved. Taking into account the above-mentioned issues, in the first stage an appropriate MEMS-type inclinometer sensor was selected, its laboratory tests were carried out and a method of the offset temperature drift correction, individual for each sensor, was developed.

Go to article

Authors and Affiliations

S. Wierzbicki
Z. Pióro
M. Osiniak
E. Antoszkiewicz
Download PDF Download RIS Download Bibtex

Abstract

Problems concerning structures dynamics are being one of most important subjects in recent investigations associated with railways constructions. The need of modelling of such structures and their behaviour prediction leads to necessity of seeking new approaches, mainly due to highly increasing speeds of vehicles and traffic intensity. Comparative studies carried out on experimental data, measurements and theoretical research show that models based on multi-layered approach supported by semi-analytical approximations of solutions can give new insight into undertaken analyses. More detailed consideration of roads components and their physical properties, along with application of effective estimations allowing to avoid numerical instabilities linked with extremal dynamic variations, can be important tools in obtaining new solutions both, theoretical and engineering. This paper briefly presents a number of multilayer railway track models, with special emphasis on nonlinear track properties. Existing analytical and semi-analytical solution methods are presented with main advantages of new approaches. The theoretical double-beam system with two nonlinear layers is solved and computational examples are presented along with possibility of their transition to other multilayer structures analysis.

Go to article

Authors and Affiliations

Piotr Kozioł
Rafał Pilecki
Download PDF Download RIS Download Bibtex

Abstract

Cauchy paved the way for constructing models in concrete technology, and elsewhere. He determined the (nonflat) surface area in 3D by measuring random total projections. Analogously, he determined the length of a curved line in 2D by way of measuring the total projections. The paper will present the mathematical expressions, because in many branches of concrete technology, modelling is found based on such Cauchy concepts. These branches – fractography in compression, tension or shear, fibre reinforcement and permeability estimation – will briefly be mentioned to demonstrate this. It has been found that, for the discussed fields of engineering relevance, major model parameters for cementitious materials are similar to those developed by Cauchy in the 19th century. In the paper some previous investigations concerning fractography, fibre reinforcement and fracture roughness will be summarized but basically a new development on porosimetry will be presented. Particularly a new achievement of successful implementation of the methodology (also based on Cauchy) for optimizing permeability estimation will be discussed.

Go to article

Authors and Affiliations

P. Stroeven
M. Słowik
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of a numerical analysis of the road acoustic screen deterioration. Due to the fact that road noise barriers are located in an environment of very high corrosivity, the problem is the rusting of the metal cladding of component panels. The presented case study was, therefore, verified to fulfill the requirements presented in the Eurocode EN 1794-1. Static analysis for wind load and dynamic analysis for the load induced from vehicles was carried out. The analysis presented in the article proved the design errors and their contribution to the formation of severe corrosion, as well as demonstrating the importance of dynamic analysis in the design of acoustic screens.

Go to article

Authors and Affiliations

P. Stempin
W. Sumelka
Download PDF Download RIS Download Bibtex

Abstract

The influence of rebar, protruding from concrete element during casting, on temperature and strength development was analyzed. Test models of size 50 cm x 50 cm x 50 cm were made with and without protruding rebar. The rebar protruding from the sample simulated the conditions of the hardening of elements such as bridge abutments or pylons, which require technological break. Samples were cast in insulated formworks, to create semi-adiabatic conditions for concrete curing, simulating real conditions of curing of mass structures. The research utilized selfconsolidating concrete with two different rapid hardening cements: CEM I 42.5R and CEM I 52.5R, and blastfurnace cement CEM III/A 42.5N. Continuous registration of temperatures in the samples was performed for the first 7 days. Based on the results acquired and compressive strength, the amount and kinetics of the heat given off in the concrete was determined and an evaluation of its strength in conditions simulating actual conditions was performed. The research showed that the difference in temperature between the reinforced and non-reinforced sample was approximately 14.0° C.

Go to article

Authors and Affiliations

M. Kaszyńska
S. Skibicki
Download PDF Download RIS Download Bibtex

Abstract

The main objective of this study is to highlight the performance of beams composed of lightweight concretefilled steel tubes (square and circle sections) composite with reinforced concrete deck slab. A total of nine composite beams were tested included two circular and seven square concrete-filled steel tubes. Among the nine composite beams, one beam, S20-0-2000, was prepared without a deck slab to act as a reference specimen. The chief parameters investigated were the length of the specimen, the compressive strength of the concrete slab, and the effect of the steel tube section type. All beams were tested using the three-point bending test with a concentrated central point load and simple supports. The test results showed that the first crack in the concrete deck slab was recorded at load levels ranging from 50.9% to 77.2% of the ultimate load for composite beams with square steel tubes. The ultimate load increased with increasing the compressive strength of the concrete slab. Shorter specimens were more stiffness than the other specimens but were less ductile. The slip values were equal to zero until the loads reached their final stages, while the specimen S20-55-1100 (short specimen) exhibited zero slip at all stages of the load. The ultimate load of the hollow steel tube composite beam was 13.2% lower than that of the reference beam. Moreover, the ductility and stiffness of the beam were also higher for beams with composite-filled steel tubes.

Go to article

Authors and Affiliations

Khawala A. Farhan
Muhaned A. Shallal
Download PDF Download RIS Download Bibtex

Abstract

Chloride ion erosion in offshore environment may damage the mechanical properties of beam bridges. In this study, the reinforced concrete specimen was designed, accelerated erosion experiments were carried out to simulate the coastal corrosion environment, and the corrosion rate, nominal strength and equivalent strength of steel bars, concrete cracks and reliability of beam bridges were calculated to understand the time-varying mechanical properties of beam bridges. The results showed that the nominal and equivalent strength of reinforcing bars decreased with the increase of corrosion rate of reinforcing bars. The change of yield strength was greater than that of equivalent strength. The change of crack width of concrete showed a slow-fast-slow trend, and the reliability of beam bridges decreased significantly in about 50 years. The experimental results show that chloride ion corrosion can significantly damage the mechanical properties of the beam bridge and affect the time-varying reliability of the beam bridge. Therefore, it is necessary to carry out timely maintenance and inspection and take effective methods to control steel corrosion to ensure the safety of the use of the beam bridge.

Go to article

Authors and Affiliations

Y.H. Gao
Download PDF Download RIS Download Bibtex

Abstract

In the present paper tensile stresses perpendicular to the grain in reinforced double-tapered beams made of glued laminated timber are discussed. The beams are analysed using the finite element method within the linear elasticity theory with the influence of orthotropic material properties. The main objective is to assess the influence of transverse reinforcement on the values and distributions of the analysed stresses and to identify the most efficient scheme of reinforcement. The obtained results prove that, with the use of the proposed tools, it is possible to assess the level of stress, including delaminating stress, and to indicate the areas of occurrence of such stress with high precision.

Go to article

Authors and Affiliations

A. Al Sabouni-Zawadzka
W. Gilewski
J. Pełczyński
Download PDF Download RIS Download Bibtex

Abstract

The analysis was focused on three post-tensioned slab bridges, constructed in 1950s. Two of them function normally and will probably achieve the life span of 100 years required by the relevant regulations. The third one will likely be demolished soon and replaced with a new reinforced concrete frame bridge. To its degradation contributed the faulty diagnosis of its technical condition during its periodic technical inspections. The introduction briefly characterises the development of the prestressed structure theories reviewing papers on concrete rheology and monographs looking into prestressing. The paper is based on the existing fragments of the technical design documents concerning the bridges in question. The bridges were designed by Polish civil engineers.

Go to article

Authors and Affiliations

S. Karaś
Download PDF Download RIS Download Bibtex

Abstract

This article presents results of the numerical analysis of the interaction between heavy caterpillar tracks system and subsoil. The main goal of the article is to present an algorithm to design working platforms - temporary structures enabling the work of heavy construction equipment on weak subsoils. A semi-analytical method is based on the results of the numerical analysis performed with use of the finite element method (FE software ZSoil.PC [12]). The calculations were carried out for the piling rig machine - Bauer BH20H (BT60). Three ground models were adopted: Model 1: one layer - weak cohesive soil (clay); Model 2: two layers: weak cohesive soil (clay) and cohesionless working platform (medium sand); Model 3: one layer: strong cohesionless subsoil (medium sand). The following problems were solved: I) entry of the machine on the ground with various geotechnical parameters under each caterpillar tracks II) detection of the maximum permissible angle of ground slope.

Go to article

Authors and Affiliations

A. Urbański
M. Richter
Download PDF Download RIS Download Bibtex

Abstract

The problem of recycled materials application in road construction is one of the key issues in contemporary road engineering. This article describes attempts to produce a hot mix asphalt (HMA) mixture entirely from processed reclaimed asphalt pavement (RAP) material. Due to the binder ageing process, rejuvenating agent was a necessary additive to the mixture. The mixture was tested to determine its parameters, including the content of voids, fatigue life, rutting resistance, stiffness and water sensitivity. The test results demonstrated that the rejuvenated RAP mixture is not inferior to fresh produced mixtures in terms of physical and strength parameters. Such results are, however, conditional on appropriate handling of the RAP material.

Go to article

Authors and Affiliations

W. Sorociak
B. Grzesik
J. Bzówka
P. Mieczkowski
Download PDF Download RIS Download Bibtex

Abstract

The article discusses "Rules for using the point rating scales for assessing the technical condition and usability of road engineering objects – second edition", which were introduced by the General Directorate for National Roads and Motorways (GDDKiA) Regulation No. 1/2019. The main objective of "Rules..." was to standardize the method of point rating assessment of technical condition and usability, and in the second edition, to take into account the latest construction and material solutions. Because the results of inspections are analyzed and compared not only at the regional but also at the national level, it is very important for all inspectors in the country to evaluate the technical condition and usability in an analogous manner. While developing the 2nd edition, the authors maintained the assumptions of continuity of inspection system, including adaptation to the inspection manuals, algorithms, and software supporting the management of bridges.

Go to article

Authors and Affiliations

L. Janas
A. Kaszyński
E. Michalak
Download PDF Download RIS Download Bibtex

Abstract

Development of contemporary building industry and related search for new aesthetical and functional solutions of monumental buildings in the centers of large cities resulted in the interest in glass as a structural material. Attractiveness of glass as a building material may be derived from the fact, that it combines transparency and aesthetical look with other functional features. Application of glass results in modern look of building facades, improves the indoor comfort without limiting the availability of natural daylight. Wide implementation of the new high performance float flat glass manufacturing technology, in conjunction with increasing expectations of the construction industry relating to new glass functions, has led to significant developments in glass structures theory, cf. [1, 3, 4, 5, 9, 10]. Many years of scientific research conducted in European Union countries have been crowned with a report CEN/TC 250 N 1050 [2], compiled as a part of the work of European Committee for Standardization on the second edition of Eurocodes - an extension of the first edition by, among others, the recommendations for the above mentioned design of glass structures, in particular modern procedures for the design of glass building structures. The procedures proposed in the pre-code [2] are not widely known in Poland, and their implementation in the design codes should be verified at the country level. This task is undertaken in this paper.

Go to article

Authors and Affiliations

M. Gwóźdź
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a concept and realization of monitoring system for the Silesian Stadium in Chorzow. The idea of the system lies in fusion of structure monitoring with a calibrated numerical FEM model [1]. The inverse problem is solved. On the base of measured selected displacements, the numerical FEM model of the structure combined with iterative method, develops the current snow load distribution. Knowing the load, we can calculate the forces and stresses in each element of the structure and thanks to this we can determine the safety thresholds and asses the owner. Test results and conclusions are presented.

Go to article

Authors and Affiliations

K. Zółtowski
M. Drawc
Download PDF Download RIS Download Bibtex

Abstract

The development of the construction industry and the growing ecological awareness of society encourages us search for new solutions to improve building materials. Therefore, an attempt was made to improve building gypsum by modifying it with the addition of polyoxymethylene (POM). Polymer grains, with a particle size below and above 2 mm, were added to the samples in the amount of 1% and 2% relative to gypsum. The work contains the results of bending and compressive strength tests of prepared gypsum beams. It was shown that the compressive strength increased by 7% and the bending strength increased by 31% when compared to the reference test without the addition of polymer. All the obtained gypsum composites were characterized by a growth of strength. The best results were obtained for the sample containing gypsum composite modified with polymer in the amount of 1% and with a diameter of grains below 2 mm.

Go to article

Authors and Affiliations

K. Prałat
M. Łukasiewicz
P. Miczko
Download PDF Download RIS Download Bibtex

Abstract

The article presents a method for assessing emissions of harmful substances and noise from road and air transport, as well as a combined assessment of the emissions of these transport pollutants. The original analytical dependencies reflecting the emissions of harmful substances from road transport, developed as part of the EMITRANSYS project implemented at the Faculty of Transport of the Warsaw University of Technology, were taken into consideration, in which the unit values of the actual road emissions of harmful substances are a function of, among other things, route length or speed of the vehicles. However, the dependencies associated with noise emissions were taken from the applicable international guidelines for assessing environmental pollution by traffic noise.

The article also describes a case study in which the impact of Warsaw Chopin Airport on noise along the Warsaw road network and the entire Warsaw agglomeration was assessed. Analyses and discussions were carried out in the scope of the change in transport noise due to air operations carried out in the analysed area. As agreed, the combined impact of road and aircraft noise in the area under study is far more unfavourable than street noise alone. Thus, it can be seen that the assessment of noise levels carried out separately for individual modes of transport (in accordance with applicable regulations) should be supplemented with the assessment of traffic noise from all modes of transport – especially in the case of simulation tests of ecologically friendly changes in the area of transport.

Go to article

Authors and Affiliations

Mariusz Jacek Wasiak
Adrian Ioan Niculescu
Mirosław Kowalski
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we randomly select 75 sets data of calcium sulfate hemihydrate (CSH) content and initial setting time, and the traditional test method of CSH and analyses initial setting time was used by complexometric titration. So the close relationship between them was studied in depth, which classification fitting data to be analyzed by regression analysis. The result shows that this regression analysis method can accurately determine CSH content in modified industrial by-product gypsum. The determination method has the advantages of simplification and rapid operation. As well as, the XRF quantitative analytical method was used to test the CSH content, which verified the accuracy of regression analysis method. The results also show that this method has high accuracy, and can simplify the traditional experimental process. The method developed is easier and more convenient and has broad prospects in application.

Go to article

Authors and Affiliations

Bing Li

Editorial office

Editor-in-Chief
Henryk Zobel


Scientific Advisory Committee
:
Andrzej M. Brandt
Werner Brilon (Germany)
Jacek Chróścielewski
Luc Courard (Belgium)
Andrzej Garbacz
Andrzej Garstecki
Wojciech Gilewski
Marian Giżejowski
Oleg Kapliński
Piotr Konderla
Aleksander Kozłowski
Marian Kwietniewski
Zbigniew Młynarek
Andrzej S. Nowak (USA)
Anna Siemińska-Lewandowska
Jan Szwabowski
Waldemar Świdziński
Andrew P. Tarko (USA)
Marian Tracz
Edmundas K. Zavadskas (Lithuania)
Jerzy Ziółko

Secretary
Dorota Walesiak

Contact

 

Politechnika Warszawska

Wydział Inżynierii Lądowej

Al. Armii Ludowej 16, 00-637 Warszawa, Polska Pokój 618; Telefon 22 234 62 84

e-mail: ace@il.pw.edu.pl;

website: http://ace.il.pw.edu.pl

 

 

 

Open Access policy

Archives of Civil Engineering jest czasopismem wydawanym w wolnym dostępie na licencji CC BY-NC-ND 4.0. https://creativecommons.org/licenses/by-nc-nd/4.0/

Archives of Civil Engineering is an open access journal with all content available with no charge in full text version. The journal content is available under the licencse CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/.

This page uses 'cookies'. Learn more