Applied sciences

Opto-Electronics Review

Content

Opto-Electronics Review | 2020 | vol. 28 | No 2 |

Download PDF Download RIS Download Bibtex

Abstract

The paper presents a research concerning the issue of visualization of blood vessels in the human body. In the initial phase of the investigations the focus was on understanding the optical properties of human body tissues. Optical transmittance of human skin was measured. Skin transmittance reaches the maximum at around 670–850 nm and 970–1100 nm. The optimal wavelength suitable for work in reflected and transmitted light was chosen. It was based on extracting blood vessels from the image for using them further in a developed system. A unique measuring system with an integrated illuminator and highly sensitive light detectors for medical imaging and stereoscopic observation was created. The high usable value of the developed system was largely gained by the original numerical program for development of measurement results. The elaborated system of blood vessels’ visualization is a mobile device. It was tested for imaging subcutaneous blood vessels. Three-dimensional observation of circulation and microcirculation in subcutaneous breast tissues is possible. Practical tests of the elaborated device for blood vessels’ medical stereoscopic observations were presented. Tests at a wavelength of 850 nm were performed. It is planned to conduct patient tests in the future at the Maria Skłodowska-Curie Institute - Oncology Center (MSCI), the Branch in Gliwice, Poland.

Go to article

Authors and Affiliations

Z. Opilski
T. Pustelny
M. Pach
T. Hejczyk
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with an issue of a rotational motion impact on a construction and presents civil engineering applications of a fiber optic rotational seismograph named Fiber-Optic System for Rotational Events & Phenomena Monitoring. It has been designed for a long- term building monitoring and structural rotations’ recording. It is based on the Sagnac effect which enables to detect one-axis rotational motion in a direct way and without any reference system. It enables to detect a rotation component in the wide range of a signal amplitude from 10-8 rad/s to 10 rad/s, as well as a frequency from DC to 1000 Hz. Data presented in this paper show the behavior of a reinforced concrete frame construction on different floors. Several measurements were carried out by placing the applied sensor on different floor levels of a building. The laboratory and in-situ measurements confirmed that Fiber-Optic System for Rotational Events & Phenomena Monitoring is an accurate and suitable device for applications in civil engineering.

Go to article

Authors and Affiliations

A. Kurzych
L.R. Jaroszewicz
J.K. Kowalski
B. Sakowicz
Download PDF Download RIS Download Bibtex

Abstract

Currently, work is underway to manufacture and find potential applications for a photoconductive semiconductor switch made of a semi-insulating material. The article analyzes the literature in terms of parameters and possibilities of using PCSS switches, as well as currently used switches in power and pulse power electronic system. The results of laboratory tests for the prototype model of the GaP-based switch were presented and compared with the PCSS switch parameters from the literature. The operating principle, parameters and application of IGBT transistor, thyristor, opto-thyristor, spark gap and power switch were presented and discussed. An analysis of the possibilities of replacing selected elements by the PCSS switch was carried out, taking into account the pros and cons of the compared devices. The possibility of using the currently made PCSS switch from gallium phosphide was also discussed.

Go to article

Authors and Affiliations

K. Piwowarski
Download PDF Download RIS Download Bibtex

Abstract

The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data. Graphene and other 2D materials, due to their extraordinary and unusual electronic and optical properties, are promising candidates for high-operating temperature infrared photodetectors. In the paper their room-temperature performance is compared with that estimated for depleted P i-N HgCdTe photodiodes. Two important conclusions result from our considerations: the first one, the performance of 2D materials is lower in comparison with traditional detectors existing on global market (InGaAs, HgCdTe and type- II superlattices), and the second one, the presented estimates provide further encouragement for achieving low-cost and high performance HgCdTe focal plane arrays operating in high-operating temperature conditions.

Go to article

Authors and Affiliations

A. Rogalski
M. Kopytko
P. Martyniuk
W. Hu
Download PDF Download RIS Download Bibtex

Abstract

Photoelectrical characteristics of scanning IR detectors with implemented time delay and integration mode are analyzed. A new “shifted cellular” layout of photosensitive elements in the FPA structure is proposed. Advantages of the new FPA configuration in terms of threshold sensitivity for small-size/point objects are demonstrated. The analysis is based on the Monte Carlo simulation of the diffusion process of photogenerated minority charge carriers in the photosensitive layer photodiode arrays. The analysis is performed taking into account the main photoelectric parameters of FPA elements: photosensitive layer thickness, diffusion length of charge carriers, optical absorption length, their design parameters: geometric sizes of FPA elements, diameters of p-n junctions, and design parameters of the optical system: optical-spot diameter.

Go to article

Authors and Affiliations

S. A. Dvoretsky
A. P. Kovchavtsev
I. I. Lee
V. G. Polovinkin
G. Yu. Sidorov
M. V. Yakushev
Download PDF Download RIS Download Bibtex

Abstract

In the paper, an effective way to design asymmetrical optics for a uniform vertical surface illumination was presented. Assessment of the obtained distribution of luminance (illuminance) on the illuminated surface is done almost at the same time as designing the optical system elements. Advantage of the final application of the presented method in 3D will be independence from the implementation of time-consuming simulations in order to verify the already designed optics. Understanding the method and its application is simple and intuitive. Observing the luminance distribution, created on the illuminated surface almost at the same time as its design, allows to see the effect of adding the next elements of the optical system on this distribution.

Go to article

Authors and Affiliations

K. Kubiak

Editorial office

Opto-Electronics Review - Editorial Board

Editor-in-Chief:
L. R. JAROSZEWICZ, Military University of Technology, Warsaw, Poland

Deputy Editor-in Chief:
P. MARTYNIUK, Military University of Technology, Warsaw, Poland


Board of Co-editors:

Optical Design and Applications
V.O. ANGELSKY, Chernivtsi National University, Chernivtsi, Ukraine

Image Processing
M. JÓŹWIK, Warsaw University of Technology, Warsaw, Poland

Metamaterials
T. ANTOSIEWICZ, Warsaw University, Warsaw, Poland

Modelling of Optoelectronic Devices. Semiconductor Lasers
M. DEMS, Łódź Technical University, Łódź, Poland

Optoelectronics Materials
D. DOROSZ, AGH University of Science and Technology, Cracow, Poland

Micro-Opto-Electro-Mechanical Systems
T.P. GOTSZALK, Wrocław University of Technology, Wrocław, Poland

Infrared Physics and Technology <
M. KOPYTKO, Military University of Technology, Warsaw, Poland

Technology and Fabrication of Optoelectronic Devices
J. MUSZALSKI, Institute of Electron Technology, Warsaw, Poland

Photonic Crystals
K. PANAJOTOV, Vrije Universiteit Brussels, Brussels, Belgium

Laser Physics, Technology and Applications
J. ŚWIDERSKI, Warsaw University of Technology, Warsaw, Poland

Optical Sensors and Applications
M. ŚMIETANA, Warsaw University of Technology, Warsaw, Poland

Photovoltaics
A. IWAN, Military Institute of Engineer Technology, Wroclaw, Poland

Biomedical Optics and Photonics
A. LIEBERT, Institute of Biocybernetics and Biomedical Engineering, Warsaw, Poland


International Editorial Advisory Board


D. BIMBERG, Technische Universitaet Berlin, Berlin, Germany

F. CAPASSO, Harvard University, Cambridge, USA

A.I. DIROCHKA, Production Center ORION, Moscow, Russia

P.G. ELISEEV, University of New Mexico, Albuquerque, USA

P. HARING−BOLIVAR, University of Siegen, Siegen, Germany

M. HENINI, University of Nottingham, Nottingham, England

B. JASKORZYNSKA, Royal Institute of Technology, Kista, Sweden

M. KIMATA, Ritsumeikan University, Shiga, Japan

R. KLETTE, University of Auckland, Auckland, New Zealand

S. KRISHNA, University of New Mexico, Albuquerque, USA

H.C. LIU, Shanghai Jiao Tong University, Shanghai, China

J. MISIEWICZ, Wrocław University of Technology, Wrocław, Poland

E. OZBAY, Bilkent University, Ankara, Turkey

J.G. PELLEGRINI, Night Vision and Electronic Sensors Directorate, Fort Belvoir, USA

M. RAZEGHI, Northwestern University, Evanston, USA

A. ROGALSKI, Military University of Technology, Warsaw, Poland

P. RUSSELL, Max Planck Institute for the Science of Light, Erlangen, Germany

V. RYZHII, University of Aizu, Aizu, Japan

C. SIBILIA, Universita' di Roma “La Sapienza”, Roma, Italy

A. TORRICELLI, Politecnico di Milano, Milano, Italy

T. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

W. WOLIŃSKI, Warsaw University of Technology, Warsaw, Poland

S.−T. WU, University of Central Florida, Orlando, USA

Y.P. YAKOVLEV, Ioffe Physicotechnical Institute, St. Petersburg, Russia

J. ZIELŃSKI, Military University of Technology, Warsaw, Poland


Language Editor

J. Kulesza, e-mail: jolanta.kulesza@wat.edu.pl


Technical Editors:

R.Podraza, e-mail: renata.podraza@wat.edu.pl

E.Sadowska, e-mail: elzbieta.sadowska@wat.edu.pl

Contact

Military University of Technology,

Gen. Sylwestra Kaliskiego St. 2,

00 – 908 Warsaw, Poland

opelre@wat.edu.pl

Instructions for authors

Open Access policy

Opto-Electronics Review is an open access journal with all content available with no charge for readers in full text version. The journal content is available under the licencse CC BY-SA 4.0

Additional information

Opto-Electronics Review was established in 1992 for the publication of scientific papers concerning optoelectronics and photonics materials, system and signal processing. This journal covers the whole field of theory, experimental verification, techniques and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. Papers covering novel topics extending the frontiers in optoelectronics and photonics are very encourage. The main goal of this magazine is promotion of papers presented by European scientific teams, especially those submitted by important team from Central and Eastern Europe. However, contributions from other parts of the world are by no means excluded.

Articles are published in OPELRE in the following categories:

-invited reviews presenting the current state of the knowledge,

-specialized topics at the forefront of optoelectronics and photonics and their applications,

-refereed research contributions reporting on original scientific or technological achievements,

-conference papers printed in normal issues as invited or contributed papers.

Authors of review papers are encouraged to write articles of relevance to a wide readership including both those established in this field of research and non-specialists working in related areas. Papers considered as “letters” are not published in OPELRE.

Opto-Electronics Review is published quarterly as a journal of the Association of Polish Electrical Engineers (SEP) and Polish Academy of Sciences (PAS) in cooperation with the Military University of Technology and under the auspices of the Polish Optoelectronics Committee of SEP.

Abstracting and Indexing:

Current Contents - Physical, Chemical & Earth Sciences

Current Contents - Engineering, Technology & Applied Sciences

Science Citation Index Expanded

Journal Citation Reports - Science Edition

Scopus

INSPEC

Policies and ethics:

The editors of the journal place particular emphasis on compliance with the following principles:

Authorship of the paper: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the reported study.

Originality and plagiarism: The authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others, that this has been appropriately cited or quoted.

Data access and retention: Authors may be asked to provide the raw data in connection with a paper for editorial review, and should be prepared to provide public access to such data.

Multiple, redundant or concurrent publication: An author should not in general publish manuscripts describing essentially the same research in more than one journal or primary publication.

Acknowledgement of sources: Proper acknowledgment of the work of others must always be given.

Disclosure and conflicts of interest: All submissions must include disclosure of all relationships that could be viewed as presenting a potential conflict of interest.

Fundamental errors in published works: When an author discovers a significant error or inaccuracy in his/her own published work, it is the author's obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Reporting standards: Authors of reports of original research should present an accurate account of the work performed as well as an objective discussion of its significance.

Hazards and human or animal subjects: Statements of compliance are required if the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, or if it involves the use of animal or human subjects.

Use of patient images or case details: Studies on patients or volunteers require ethics committee approval and informed consent, which should be documented in the paper.

This page uses 'cookies'. Learn more