### Details

#### Title

Machine-part grouping and cluster analysis: similarities, distances and grouping criteria#### Journal title

Bulletin of the Polish Academy of Sciences: Technical Sciences#### Yearbook

2009#### Volume

vol. 57#### Numer

No 3#### Authors

#### Divisions of PAS

Nauki Techniczne#### Coverage

217-228#### Date

2009#### Identifier

ISSN 2300-1917#### References

Burbridge J. (1971), Production flow analysis, Production Engineering, 4, 139. ; McAuley J. (1972), "Machine grouping for efficient production, The Production Engineer, 51, 53. ; Carrie A. (1973), Numerical taxonomy applied to group technology and plant layout, IJPR, 11, 399. ; Cheng Ch. (1995), A comparative examination of selected cellular manufacturing clustering algorithms, Int. J. Operations & Prod. Mgmt, 15, 12, 86. ; Crama Y. (1996), Models for machine-part grouping in cellular manufacturing, IJPR, 34, 6, 1693. ; Sarker B. (1999), Grouping efficiency measures in cellular manufacturing: a survey and critical review, IJPR, 37, 2, 285. ; Sarker B. (2000), A comparison of existing grouping efficiency measures and a new weighted grouping efficiency measure, IIE Trans, 1, 32. ; Kulkarni U. (1995), Dynamic grouping of parts in flexible manufacturing systems - a self-organizing neural networks approach, EJOR, 84, 192. ; Kusiak A. (1986), Clustering analysis: models and algorithms, Control and Cybernetics, 15, 2, 139. ; Kumar K. (1986), Grouping parts and components in flexible manufacturing systems, EJOR, 24, 387. ; Vannelli A. (1986), A method for finding minimal bottleneck cells for grouping part-machine families, IJPR, 24, 387. ; Kusiak A. (1987), The generalized group technology concept, IJPR, 25, 561. ; Askin R. (1991), A Hamiltonian path approach to reordering the part machine matrix for cellular manufacturing, IJPR, 29, 6, 1081. ; Veeramani D. (1996), A polynomial-time algorithm for optimal clustering in a special class of {0-1- matrices, IJPR, 34, 9, 2587. ; Boctor F. (1991), A linear formulation of the machine-part cell formation problem, IJPR, 29, 3, 343. ; Boctor F. (1996), The minimum-cost machine-part cell formation problem, IJPR, 34, 4, 1045. ; Stawowy A. (1996), Optimization in Combinatorial Problems, 1, 185. ; Rogers D. (2005), Optimal bivariate clustering and a genetic algorithm with an application in cellular manufacturing, EJOR, 160, 2, 423. ; Yasuda K. (2005), A grouping genetic algorithm for the multi-objective cell formation problem, IJPR, 43, 4, 829. ; Kusiak A. (1991), GT/ART: using neural network to form machine cells, Manufacturing Review, 4, 4, 293. ; Kaparth S. (1992), Machine-component cell formation in group technology: MACE, IJPR, 30, 6, 1353. ; Arizono I. (1995), A new stochastic neural network model and its application to grouping parts and tools in flexible manufacturing systems, IJPR, 33, 6, 1535. ; Kuo R. (2006), Part family formation through fuzzy ART2 neural network, Decision Support Systems, 42, 1, 89. ; Shankar R. (2004), Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing, EJOR, 157, 3, 592. ; Smith A. (2003), Incorporating heterogeneous distance metrics within block layout design, IJPR, 41, 5, 1045. ; Castillo I. (2003), An extended distance-based facility layout problem, IJPR, 41, 11, 2451. ; Dunker T. (2003), A coevolutionary algorithm for a facility layout problem, IJPR, 41, 15, 3479. ; Lei D. (2005), Tabu search approach based on a similarity coefficient for cell formation in generalized group technology, IJPR, 43, 19, 4035. ; Yang M.-Sh. (2006), Mixed-variable fuzzy clustering approach to part family and machine cell formation for group technology applications, IJPE, 103, 1, 185. ; Alhourani F. (2007), Machine cell formation for production management in cellular manufacturing systems, IJPR, 45, 4, 913. ; Kim C. (2004), A two-phase heuristic algorithm for cell formation problems considering alternative part routes and machine sequences, IJPR, 42, 18, 3911. ; Mahdavi I. (2006), A set partitioning based heuristic procedure for incremental cell formation with routing flexibility, IJPR, 44, 24, 5343. ; Chu C. (1991), A fuzzy clustering approach to manufacturing cell formation, IJPR, 29, 7, 1475. ; Gindy N. (1995), Component grouping for group technology applications - a fuzzy clustering approach with validity measure, IJPR, 33, 9, 2493. ; Susanto S. (1999), A new fuzzy-c-means and assignment-technique-based cell formation algorithm to perform part-type-clusters and machine-type-clusters separately, Production Planning and Control, 10, 4, 375. ; Li J. (2007), An improved fuzzy clustering method for cellular manufacturing, IJPR, 45, 5, 1049. ; Wang H. (2006), Solving group technology problems via clique partitioning, IJFMS, 18, 2, 77. ; Won Y. (2004), Efficient <i>p</i>-median mathematical programming approaches to machine-part grouping in group technology manufacturing, Engineering Optimization, 36, 5, 555. ; Won Y. (2004), Modified <i>p</i>-median approach for efficient group technology cell formation, Computers & Industrial Engineering, 46, 3, 495. ; Shafer S. (1993), Similarity and distance measures for cellular manufacturing. Part I: A survey, IJPR, 31, 5, 1133. ; Shafer S. (1993), Similarity and distance measures for cellular manufacturing. Part II: An extension and comparison, IJPR, 31, 6, 1315. ; K. Saiful Islam (2000), A similarity coefficient measure and machine-parts grouping in cellular manufacturing systems, IJPR, 38, 3, 699. ; Viswanathan S. (1996), A new approach for solving the P-median problem in group technology, IJPR, 34, 10, 2691. ; Yasuda K. (2001), A dissimilarity measure for solving the cell formation problem in cellular manufacturing, Computers & Industrial Engineering, 39, 1. ; Yin Y. (2002), Manufacturing cells design in consideration of various production factors, IJPR, 40, 885. ; Dimopoulos C. (2004), Evolving knowledge for the solution of clustering problems in cellular manufacturing, IJPR, 42, 19, 4119. ; Adil G. (2005), Maximum diversity / similarity models with extension to part grouping, ITOR, 12, 3, 311. ; Akturk M. (1996), Part-machine grouping using a multi-objective cluster analysis, IJPR, 34, 8, 2299. ; Nair G. (1996), Grouping index: a new quantitative criterion for goodness of block-diagonal forms in group technology, IJPR, 34, 10, 2767. ; Bock H. (1994), Classification and clustering: problems for the future, New Approaches in Classification and Data Analysis, 1, 3, doi.org/10.1007/978-3-642-51175-2_1 ; Stańczak J. (2002), Seminar at the Systems Research Institute. ; Owsiński J. (1984), Data Analysis and Informatics, 293. ; Owsiński J. (1991), "On a new naturally indexed quick clustering method with global objective function, Appl. Stoch. Models & Data Analysis, 6, 157.#### DOI

10.2478/v10175-010-0123-2