Details

Title

Kinetic analysis of thermogravimetric data collected from bigger samples

Journal title

Chemical and Process Engineering

Yearbook

2012

Numer

No 1 March

Authors

Keywords

thermogravimetry ; kinetics ; thermal lag ; cellulose pyrolysis ; metal oxide reduction

Divisions of PAS

Nauki Techniczne

Coverage

85-94

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2012

Type

Artykuły / Articles

Identifier

ISSN 0208-6425

References

Babu B. (2004), Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum, Energy Convers. Management, 45, 1297, doi.org/10.1016/j.enconman.2003.09.013 ; Cabellero J. (1995), New kinetic model for thermal decomposition of heterogeneous materials, Ind. Eng. Chem. Res, 34, 806, doi.org/10.1021/ie00042a012 ; Conesa J. (2001), Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data, J. Anal. Applied Pyrolysis, 58-59, 617, doi.org/10.1016/S0165-2370(00)00130-3 ; C. Di Blasi (1998), Comparison of semi-global mechanisms for primary pyrolysis of lignocellulosic fuels, J. Anal. Appl. Pyrolysis, 47, 43, doi.org/10.1016/S0165-2370(98)00079-5 ; C. Di Blasi (2009), Combustion and gasification rates of lignocellulosic chars, Progr. Energ. Comb. Sci, 35, 121, doi.org/10.1016/j.pecs.2008.08.001 ; Galwey A. (1998), Handbook of Thermal Analysis and Calorymetry, Vol. 1: Principles and Practice, 147. ; Gronli M. (1999), A round-robun study of cellulosepyrolysis kinetics by thermogravimetry, Ind. Eng. Chem. Res, 38, 2238, doi.org/10.1021/ie980601n ; Hagge M. (2002), Modeling the impact of shrinkage on the pyrolysis of dry biomass, Chem. Eng. Sci, 57, 2811, doi.org/10.1016/S0009-2509(02)00167-7 ; Jang J. (1995), Heat transfer, mass transfer and kinetics study of the vacuum pyrolysis of a large used tire particles, Chem. Eng. Sci, 50, 1909, doi.org/10.1016/0009-2509(95)00062-A ; Kissinger H. (1956), Variation of peak temperature with heating rate in differential thermal analysis, J. Res. Natl. Bur. Stand, 57, 2712. ; Ledakowicz S. (2003), Multiphase and multifunctional reactors for the basic chemical, biochemical and environmental processes, 273. ; Narayan R. (1996), Thermal lag, fusion, and the compensation effect during biomass pyrolysis, Ind. Eng. Chem. Res, 35, 1711, doi.org/10.1021/ie950368i ; Piddubniak O. (2011), New approach to a problem of heat transfer with chemical reaction in a cylinder of finite dimensions, Int. J. Heat Mass Trans, 54, 338, doi.org/10.1016/j.ijheatmasstransfer.2010.09.038 ; Pyle D. (1984), Heat transfer and kinetics in the low temperature pyrolysis of solids, Chem. Eng. Sci, 39, 147, doi.org/10.1016/0009-2509(84)80140-2 ; Stenseng M. (2001), Investigation of biomass pyrolysis by thermogravimetric analysis and differential scanning calorimetry, J. Anal. Appl. Pyrol, 58-59, 765, doi.org/10.1016/S0165-2370(00)00200-X ; Stolarek P. (2006), Application of selected methods of thermal analysis in determination of thermal decomposition kinetics of biomass, Chem. Process Eng, 27, 1309. ; Völker S. (2002), Thermokinetic investigation of cellulose pyrolysis - impact of initial and final mass on kinetic results, J. Anal. Appl. Pyrolysis, 62, 165, doi.org/10.1016/S0165-2370(01)00113-9 ; Vyazovkin S. (1998), Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids, Int. Rev. Phys. Chem, 17, 407, doi.org/10.1080/014423598230108

DOI

10.2478/v10176-012-0008-z

×