Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 18
items per page: 25 50 75
Sort by:

Abstract

The paper presents the results of theoretical analysis and experimental research on the material’s influence and tool geometry on the welding speed and mechanical strength of Al 2024 thin sheet metal joints. To make the joints, tungsten carbide and ceramics tools with a smooth and modified surface of the shoulder were used. The choice of the geometrical parameters of the tool was adjusted to the thickness of the joined sheet. During welding, the values of axial and radial force were recorded to determine the stability of the process. The quality of the joint was examined and evaluated on the basis of visual analysis of the surface and cross-sections of the joint area and the parent material, and subjected to mechanical strength tests. The test results indicate that both the geometry of the tool shoulder and the tool material have a decisive influence on the quality of the joint and the welding speed, making it possible to shorten the duration of the entire process.
Go to article

Abstract

The paper presents the results of research on the modification of the face geometry of the refill friction stir spot welding tool sleeve for welding thin aluminum sheets with an Alclad and an oxide anode coating. The analysis of the impact of such modification on the process perform (tool motion parameters, temperature) and microstructure as well as mechanical strength of the lap joints were analyzed. The tests were carried out using aluminum alloy 2024-T3 sheets with thickness 1.27 mm. For comparative purposes, joints were also made using plates without an Alclad and without anodized coating with using unmodified tool and modified tools with developed 3 variants of face geometry. The samples with the joint were subjected to metallographic and strength tests. It has been shown that the use of modified geometry has a decisive influence on the performance of the process and the effect of softening and mixing of materials in the zone of point connection.
Go to article

Abstract

The paper presents the results of research work on linear FSW (Friction Stir Welding) joining aluminum alloys AA2024-T3 of 0.5 mm in thickness. The study was conducted on properly adapted numerical controlled 3 axis milling machine using a ceramic tool and special designed fastening device. The tool dimensions have been estimated according to the algorithm shown in the literature [4]. All joints were made of end-to end (butt) configuration under different welding speed. The rotational speed of the tool and tool offset was constant. The effect of selected technological parameters on the quality of the joint was analyzed. Produced butt joint have been subjected to a static tensile testing to identify mechanical features of the materials of joints compared to parent materials. Measurements of micro hardness HV in the plastically formed stir zone of joint and in the parent material have been carried out. Axial and radial welding forces in the joining region were recorded during the tests and their dependency from the welding parameters was studied. Based on the results of strength tests the efficiency of joints for sheets of 0.5 mm in thicknesses oscillated up to 96% compared to the parent material. It has been found that for given parameters the correct, free of defects joints were obtained. The paper also presents the results of low-cycle fatigue tests of obtained FSW joints. The use of a ceramic tool in the FSW process allows to obtain welds with higher strength than conventional tools. The results suggests that FSW can be potentially applied to joining aluminum alloys.
Go to article

Abstract

Basing on experimental data, the possibility of consolidating side products of turning, milling and drilling of aluminum alloys into the form and properties of solids metals using low-temperature KoBo extrusion method has been assessed. Research regarding mechanical and structural properties of the final products revealed their total consolidation and proved their compatibility with requirements for products made of bulk billets. Importantly, the chips consolidation process does not require high or even raised temperature, which significantly reduces the unfavorable phenomenon of chips oxidation and its negative influence on the structure and mechanical properties of products. A very good effect of chips compaction has been proved by KoBo method, which has been confirmed by relatively slightly different mechanical properties of the material after recycling compared with the bulk one. Among currently applied techniques of consolidation of dispersed fractions in a solid state (leaving the melting stage out), the KoBo method seems an innovative way of utilizing metallic chips, as it enables a cold deformation process. The paper presents investigations using 2024 and 7075 aluminum alloys chips from manufacturing process, formed into briquettes and deformed under conditions of KoBo extrusion process, which enables to obtain long product by cold forming. The final product characterized by good microstructures, mechanical features and low cost of production.
Go to article

Abstract

The subject of the study are alumina foams produced by gelcasting method. The results of micro-computed tomography of the foam samples are used to create the numerical model reconstructing the real structure of the foam skeleton as well as the simplified periodic open-cell structure models. The aim of the paper is to present a new idea of the energy-based assessment of failure strength under uniaxial compression of real alumina foams of various porosity with use of the periodic structure model of the same porosity. Considering two kinds of cellular structures: the periodic one, for instance of fcc type, and the random structure of real alumina foam it is possible to justify the hypothesis, computationally and experimentally, that the same elastic energy density cumulated in the both structures of the same porosity allows to determine the close values of fracture strength under compression. Application of finite element computations for the analysis of deformation and failure processes in real ceramic foams is time consuming. Therefore, the use of simplified periodic cell structure models for the assessment of elastic moduli and failure strength appears very attractive from the point of view of practical applications.
Go to article

This page uses 'cookies'. Learn more