Search results

Filters

  • Journals

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

In this paper a 600 MW oxy-type coal unit with a pulverized bed boiler and a membrane-cryogenic oxygen separator and carbon capture installation was analyzed. A membrane-cryogenic oxygen separation installation consists of a membrane module and two cryogenic distillation columns. In this system oxygen is produced with the purity equal to 95%. Installation of carbon capture was based on the physical separation method and allows to reduce the CO2emission by 90%. In this work the influence of the main parameter of the membrane process – the selectivity coefficient, on the efficiency of the coal unit was presented. The economic analysis with the use of the break-even point method was carried out. The economic calculations were realized in view of the break-even price of electricity depending on a coal unit availability.
Go to article

Abstract

In this paper the results of the thermodynamic analysis of the oxy-combustion type pulverized bed boiler integrated with a hybrid, membrane- cryogenic oxygen separation installation are presented. For the calculations a 600 MW boiler with live steam parameters at 31.1 MPa /654.9 oC and reheated steam at 6.15 MPa/672.4 oC was chosen. In this paper the hybrid membrane-cryogenic technology as oxygen production unit for pulverized bed boiler was proposed. Such an installation consists of a membrane module and two cryogenic distillation columns. Models of these installations were built in the Aspen software. The energy intensity of the oxygen production process in the hybrid system was compared with the cryogenic technology. The analysis of the influence of membrane surface area on the energy intensity of the process of air separation as well as the influence of oxygen concentration at the inlet to the cryogenic installation on the energy intensity of a hybrid unit was performed.
Go to article

Abstract

The purpose of this paper was to search the relations between the structure of the compressed expanded graphite – polymer – turbostratic carbon composites on successive stages of technological treatment and parameters describing the acoustic emission phenomena in these materials. The acoustic emission method can be used for measurements of changes in the structure and many different properties of materials. These investigations are a continuation of our earlier studies concerning physical, mechanical and chemical properties of porous composites created on the basis of a compressed expanded graphite matrix, obtained after successive technological procedures of impregnation, polymerization and carbonization of polyfurfuryl alcohol. The aim of this work was to investigate materials obtained at different levels of technological processing, thus with different densities, porosity, physical and chemical properties, by using the acoustic emission method. In compressed expanded graphite composites structures one can differentiate two basic directions: perpendicular to the bedding plane of graphite flakes and parallel to this one. The all presented results were obtained for the uniaxial strain applied in the direction perpendicular to the bedding plane of the composite structure. Analysis of acoustic emission parameters provides information on physical and chemical processes in these materials.
Go to article

This page uses 'cookies'. Learn more