Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

Aluminium alloys are one of the preferred materials especially for land and air transportation because of their high strength and lowdensity properties. Although production using casting method is economical yet it has some disadvantages. Shrinkage which is occurred due to the density difference between the solid and liquid metal is prevented by feeders which need to be calculated. Liquid metal should be transferred to the mould without any turbulence. As a result, sprues are needed to be designed precisely. On the other hand, aluminium alloys can also be shaped by forging at semi-solid temperatures. There are some advantages compared to the traditional forging methods of improving die life due to the lower tonnage values. In this study, semi-solid produced 7075 aluminium alloy die filling capabilities were investigated. To achieve semisolid structure strain induced melt activated method (SIMA) was used. The desired structure was achieved at 635 °C and 30 minutes of duration of heat treatment. After determining the optimum parameters, metallographic analysis, density calculations, porosity distribution and tensile tests were carried out. It was found that the reproducibility of SIMA produced 7075 alloy was quite low. A proper tensile test result was achieved only 7 of the total 15 tests and the mean value was 386 MPa. The main reason for this scattered in mechanical properties could be the chemical composition of the alloy and the rapid solidification of the liquid eutectic phases. It is important to define the best fitting process parameters and controlling them precisely will be the most important factors for future studies.
Go to article

Abstract

A356 is one of the widely used aluminium casting alloy that has been used in both sand and die casting processes. Large amounts of scrap metal can be generated from the runner systems and feeders. In addition, chips are generated in the machined parts. The surface area with regard to weight of chips is so high that it makes these scraps difficult to melt. Although there are several techniques evolved to remedy this problem, yet the problem lies in the quality of the recycled raw material. Since recycling of these scrap is quite important due to the advantages like energy saving and cost reduction in the final product, in this work, the recycling efficiency and casting quality were investigated. Three types of charges were prepared for casting: %100 primary ingot, %100 scrap aluminium and fifty-fifty scrap aluminium and primary ingot mixture were used. Melt quality was determined by calculating bifilm index by using reduced pressure test. Tensile test samples were produced by casting both from sand and die moulds. Relationship between bifilm index and tensile strength were determined as an indication of correlation of melt quality. It was found that untreated chips decrease the casting quality significantly. Therefore, prior to charging the chips into the furnace for melting, a series of cleaning processes has to be used in order to achieve good quality products.
Go to article

This page uses 'cookies'. Learn more