Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

The study was aimed to develop an indirect enzyme-linked immunosorbent assay (ELISA), which can detect specifically Feline herpesvirus type 1 (FHV-1). The primers were designed based on the conserved sequence of FHV-1 glycoprotein B gene. The recombinant protein with reactogenicity was purified as coating antigen of the assay. The indirect ELISA, characterized by high sensitivity showed no cross-reaction with two types of feline virus, had detection limit at 1:2000 dilution. The positive rate of the assay, according to the determined cutoff value (0.25), was basically consistent with Feline Herpes Virus Antibody ELISA kit. In conclusion, the indirect ELISA with high repeatability and reproducibility can be used for detecting FHV-1, and can provide necessary support to related research.
Go to article

Abstract

The advance of MEMS-based inertial sensors successfully expands their applications to small unmanned aerial vehicles (UAV), thus resulting in the challenge of reliable and accurate in-flight alignment for airborne MEMS-based inertial navigation system (INS). In order to strengthen the rapid response capability for UAVs, this paper proposes a robust in-flight alignment scheme for airborne MEMS-INS aided by global navigation satellite system (GNSS). Aggravated by noisy MEMS sensors and complicated flight dynamics, a rotation-vector-based attitude determination method is devised to tackle the in-flight coarse alignment problem, and the technique of innovation-based robust Kalman filtering is used to handle the adverse impacts of measurement outliers in GNSS solutions. The results of flight test have indicated that the proposed alignment approach can accomplish accurate and reliable in-flight alignment in cases of measurement outliers, which has a significant performance improvement compared with its traditional counterparts.
Go to article

Abstract

Abstract Magnetic-geared permanent magnet (MGPM) electrical machine is a new type of machine by incorporating magnetic gear into PM electrical machine, and it may be in operation with low-speed, high-torque and direct-driven. In this paper, three types of MGPM machines are present, and a quantitative comparison among them is performed by finite element analysis (FEA). The magnetic field distribution, stable torque and back EMF are obtained at no-load. The results show that three types of MGPM machine are suitable for different application fields respectively according to their own advantages, such as high torque and back EMF, which form an important foundation for MGPM electrical machine research.
Go to article

This page uses 'cookies'. Learn more