Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 3
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The present study addresses the utilization of induction furnace steel slag which is an anthropogenic waste, for enhancing the mechanical properties of a commercial aluminium alloy A356. Different weight percentage (3wt%, 6wt%, 9wt%, and 12wt%) of steel slag particles in 1 to 10 μm size range were used as reinforcing particles in aluminium alloy A356 matrix. The composites were prepared through stir casting technique. The results revealed an improvement in mechanical properties (i.e. microhardness and tensile strength) and wear resistance with an increase in weight percentage of the steel slag particles. This research work shows promising results for the utilization of the steel slag for enhancing the properties of aluminium alloy A356 at no additional cost while assisting at same time in alleviating land pollution.
Przejdź do artykułu

Abstrakt

In this study, high performance magnesium-yttria nanocomposite’s room temperature, strength and ductility were significantly enhanced by the dispersion of nano-sized nickel particles using powder blending and a microwave sintering process. The strengthening effect of the dispersed nano-sized nickel particles was consistent up to 100°C and then it gradually diminished with further increases in the test temperature. The ductility of the magnesium-yttria nanocomposite remained unaffected by the dispersed nano-sized nickel particles up to 100°C. Impressively, it was enhanced at 150°C and above, leading to the possibility of the near net shape fabrication of the nanocomposite at a significantly low temperature.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji