Search results

Filters

  • Journals

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

Mechanical and technological properties of castings made from 3xx.x alloys depend mainly on properly performed process of melting and casting, structure of a casting and mould, as well as possible heat treatment. Precipitation processes occurring during the heat treatment of the silumins containing additives of Cu and/or Mg have effect on improvement of mechanical properties of the material, while choice of parameters of solutioning and ageing treatments belongs to objectives of research work performed by a number of authors. Shortened heat treatment, which is presented in the paper assures suitable mechanical properties (Rm), and simultaneously doesn’t cause any increase of production costs of a given component due to long lasting operations of the solutioning and ageing. Results of the research concern effects of the solutioning and ageing parameters on the Rm tensile strength presented in form of the second degree polynomial and illustrated in spatial diagrams. Performed shortened heat treatment results in considerable increase of the Rm tensile strength of the 320.0 alloy as early as after 1 hour of the solutioning and 2 hours of the ageing performed in suitable.
Go to article

Abstract

The most important parameters which predetermine mechanical properties of a material in aspects of suitability for castings to machinery components are: tensile strength (Rm), elongation (A5, hardness (HB) and impact strength (KCV). Heat treatment of aluminum alloys is performed to increase mechanical properties of the alloys mainly. The paper comprises a testing work concerning effect of heat treatment process consisting of solution heat treatment and natural ageing on mechanical properties and structure of AlZn10Si7MgCu alloy moulded in metal moulds. Investigated alloy was melted in an electric resistance furnace. Run of crystallization was presented with use of thermal-derivative method (ATD). This method was also implemented to determination of heat treatment temperature ranges of the alloy. Performed investigations have enabled determination of heat treatment parameters’ range, which conditions suitable mechanical properties of the investigated alloy. Further investigations will be connected with determination of optimal parameters of T6 heat treatment of the investigated alloy and their effect on change of structure and mechanical/technological properties of the investigated alloy.
Go to article

Abstract

Heat treatment of a casting elements poured from silumins belongs to technological processes aimed mainly at change of their mechanical properties in solid state, inducing predetermined structural changes, which are based on precipitation processes (structural strengthening of the material), being a derivative of temperature and duration of solutioning and ageing operations. The subject-matter of this paper is the issue concerning implementation of a heat treatment process, basing on selection of dispersion hardening parameters to assure improvement of technological quality in terms of mechanical properties of a clamping element of energy network suspension, poured from hypoeutectic silumin of the LM25 brand; performed on the basis of experimental research program with use of the ATD method, serving to determination of temperature range of solutioning and ageing treatments. The heat treatment performed in laboratory conditions on a component of energy network suspension has enabled increase of the tensile strength Rm and the hardness HB with about 60-70% comparing to the casting without the heat treatment, when the casting was solutioned at temperature 520 o C for 1 hour and aged at temperature 165 o C during 3 hours.
Go to article

Abstract

Improvement of Al-Si alloys properties in scope of classic method is connected with change of Si precipitations morphology through: using modification of the alloy, maintaining suitable temperature of overheating and pouring process, as well as perfection of heat treatment methods. Growing requirements of the market make it necessary to search after such procedures, which would quickly deliver positive results with simultaneous consideration of economic aspects. Presented in the paper shortened heat treatment with soaking of the alloy at temperature near temperature of solidus could be assumed as the method in the above mentioned understanding of the problem. Such treatment consists in soaking of the alloy to temperature of solutioning, keeping in such temperature, and next, quick quenching in water (20 0 C) followed by artificial ageing. Temperature ranges of solutioning and ageing treatments implemented in the adopted testing plan were based on analysis of recorded curves from the ATD method. Obtained results relate to dependencies and spatial diagrams describing effect of parameters of the solutioning and ageing treatments on HB hardness of the investigated alloy and change of its microstructure. Performed shortened heat treatment results in precipitation hardening of the investigated 320.0 alloy, what according to expectations produces increased hardness of the material.
Go to article

Abstract

To the main advantages of magnesium alloys belongs their low density, and just because of such property the alloys are used in aviation and rocket structures, and in all other applications, where mass of products have significant importance for conditions of their operation. To additional advantages of the magnesium alloys belongs good corrosion resistance, par with or even surpassing aluminum alloys. Magnesium is the lightest of all the engineering metals, having a density of 1.74 g/cm3 . It is 35% lighter than aluminum (2.7 g/cm3 ) and over four times lighter than steel (7.86 g/cm3 ). The Mg-Li alloys belong to a light-weight metallic structural materials having mass density of 1.35-1.65 g/cm3 , what means they are two times lighter than aluminum alloys. Such value of mass density means that density of these alloys is comparable with density of plastics used as structural materials, and therefore Mg–Li alloys belong to the lightest of all metal alloys. In the present paper are discussed melting and crystallization processes of ultra-light weight MgLi12,5 alloys recorded with use of ATND methods. Investigated magnesium alloy was produced in Krakow Foundry Research Institute on experimental stand to melting and casting of ultra-light weight alloys. Obtained test results in form of recorded curves from ATND methods have enabled determination of characteristic temperatures of phase transitions of the investigated alloy.
Go to article

Abstract

Very well-known advantages of aluminum alloys, such as low mass, good mechanical properties, corrosion resistance, machining-ability, high recycling potential and low cost are considered as a driving force for their development, i.e. implementation in new applications as early as in stage of structural design, as well as in development of new technological solutions. Mechanical and technological properties of the castings made from the 3xx.x group of alloys depend mainly on correctly performed processes of melting and casting, design of a mould and cast element, and a possible heat treatment. The subject-matter of this paper is elaboration of a diagrams and dependencies between parameters of dispersion hardening (temperatures and times of solutioning and ageing treatments) and mechanical properties obtained after heat treatment of the 356.0 (EN AC AlSi7Mg) alloy, enabling full control of dispersion hardening process to programming and obtaining a certain technological quality of the alloy in terms of its mechanical properties after performed heat treatments. Obtained results of the investigations have enabled obtainment of a dependencies depicting effect of parameters of the solutioning and ageing treatments on the mechanical properties (Rm, A5 and KC impact strength) of the investigated alloy. Spatial diagrams elaborated on the basis of these dependencies enable us to determine tendencies of changes of the mechanical properties of the 356.0 alloy in complete analyzed range of temperature and duration of the solutioning and ageing operations.
Go to article

Abstract

Dispersion hardening, as the main heat treatment of silumins having additions of copper and magnesium, results in considerable increase of tensile strength and hardness, with simultaneous decrease of ductility of the alloy. In the paper is presented an attempt of introduction of heat treatment operation consisting in homogenizing treatment prior operation of the dispersion hardening, to minimize negative effects of the T6 heat treatment on plastic properties of hypereutectoidal AlSi17CuNiMg alloy. Tests of the mechanical properties were performed on a test pieces poured in standardized metal moulds. Parameters of different variants of the heat treatment, i.e. temperature and time of soaking for individual operations were selected basing on the ATD (Thermal Derivation Analysis) diagram and analysis of literature. The homogenizing treatment significantly improves ductility of the alloy, resulting in a threefold increase of the elongation and more than fourfold increase of the impact strength in comparison with initial state of the alloy. Moreover, the hardness and the tensile strength (Rm) of the alloy decrease considerably. On the other hand, combination of the homogenizing and dispersion hardening enables increase of elongation with about 40%, and increase of the impact strength with about 25%, comparing with these values after the T6 treatment, maintaining high hardness and slight increase of the tensile strength, comparing with the alloy after the dispersion hardening
Go to article

Abstract

Automation of machining operations, being result of mass volume production of components, imposes more restrictive requirements concerning mechanical properties of starting materials, inclusive of machinability mainly. In stage of preparation of material, the machinability is influenced by such factors as chemical composition, structure, mechanical properties, plastic working and heat treatment, as well as a factors present during machining operations, as machining type, cutting parameters, material and geometry of cutting tools, stiffness of the system: workpiece – machine tool – fixture and cutting tool. In the paper are presented investigations concerning machinability of the EN AC-AlSi9Cu3(Fe) silumin put to refining, modification and heat treatment. As the parameter to describe starting condition of the alloy was used its tensile strength Rm. Measurement of the machining properties of the investigated alloy was performed using a reboring method with measurement of cutting force, cutting torque and cutting power. It has been determined an effect of the starting condition of the alloy on its machining properties in terms of the cutting power, being indication of machinability of the investigated alloy. The best machining properties (minimal cutting power - Pc=48,3W) were obtained for the refined alloy, without heat treatment, for which the tensile strength Rm=250 MPa. The worst machinability (maximal cutting power Pc=89,0W) was obtained for the alloy after refining, solutioning at temperature 510 o C for 1,5 hour and aged for 5 hours at temperature 175 o C. A further investigations should be connected with selection of optimal parameters of solutioning and ageing treatments, and with their effect on the starting condition of the alloy in terms of improvement of both mechanical properties of the alloy and its machining properties, taking into consideration obtained surface roughness.
Go to article

This page uses 'cookies'. Learn more