Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 39
items per page: 25 50 75
Sort by:

Abstract

The positivity and absolute stability of a class of nonlinear continuous-time and discretetime systems are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.
Go to article

Abstract

A new method for computation of positive realizations of given transfer matrices of fractional linear continuous-time linear systems is proposed. Necessary and sufficient conditions for the existence of positive realizations of transfer matrices are given. A procedure for computation of the positive realizations is proposed and illustrated by examples.
Go to article

Abstract

Abstract The conditions for positivity and stability of a class of fractional nonlinear continuous-time systems are established. It is assumed that the nonlinear vector function is continuous, satisfies the Lipschitz condition and the linear part is described by a Metzler matrix. The stability conditions are established by the use of an extension of the Lyapunov method to fractional positive nonlinear systems.
Go to article

Abstract

Abstract A new formulation of the minimum energy control problem for the positive 2D continuous-discrete linear systems with bounded inputs is proposed. Necessary and sufficient conditions for the reachability of the systems are established. Conditions for the existence of the solution to the minimum energy control problem and a procedure for computation of an input minimizing the given performance index are given. Effectiveness of the procedure is demonstrated on numerical example.
Go to article

Abstract

Abstract The asymptotic stability of discrete-time and continuous-time linear systems described by the equations xi+1 = Ākxi and x(t) = Akx(t) for k being integers and rational numbers is addressed. Necessary and sufficient conditions for the asymptotic stability of the systems are established. It is shown that: 1) the asymptotic stability of discrete-time systems depends only on the modules of the eigenvalues of matrix Āk and of the continuous-time systems depends only on phases of the eigenvalues of the matrix Ak, 2) the discrete-time systems are asymptotically stable for all admissible values of the discretization step if and only if the continuous-time systems are asymptotically stable, 3) the upper bound of the discretization step depends on the eigenvalues of the matrix A.
Go to article

Abstract

Abstract The relationship between the observability of standard and fractional discrete-time and continuous-time linear systems are addressed. It is shown that the fractional discrete-time and continuous-time linear systems are observable if and only if the standard discrete-time and continuous-time linear systems are observable.
Go to article

Abstract

Abstract A method of analysis of descriptor nonlinear discrete-time systems with regular pencils of linear part is proposed. The method is based on the Weierstrass-Kronecker decomposition of the pencils. Necessary and sufficient conditions for the positivity of the nonlinear systems are established. A procedure for computing the solution to the equations describing the nonlinear systems are proposed and demonstrated on numerical examples.
Go to article

Abstract

The minimum energy control problem for the positive descriptor discrete-time linear systems with bounded inputs by the use of Weierstrass-Kronecker decomposition is formulated and solved. Necessary and sufficient conditions for the positivity and reachability of descriptor discrete-time linear systems are given. Conditions for the existence of solution and procedure for computation of optimal input and the minimal value of the performance index is proposed and illustrated by a numerical example.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

The analysis of the positivity and stability of linear electrical circuits by the use of state-feedbacks is addressed. Generalized Frobenius matrices are proposed and their properties are investigated. It is shown that if the state matrix of an electrical circuit has generalized Frobenius form then the closed-loop system matrix is not positive and asymptotically stable. Different cases of modification of the positivity and stability of linear electrical circuits by state-feedbacks are discussed and necessary conditions for the existence of solutions to the problem are established.
Go to article

Abstract

Conditions for the positivity of linear electrical circuits composed of resistances, coils, capacitors and voltage (current) sources are established. It is shown that: 1) the electrical circuit composed of resistors, coils and voltage source is positive for any values of their resistances, inductances and source voltages if and only if the number of coils is less or equal to the number of its linearly independent meshes, 2) the electrical circuit is not positive for any values of its resistances, capacitances and source voltages if each its branch contains resistor, capacitor and voltage source, 3) the positive n-meshes electrical circuit with only one inductance in each linearly independent mesh is reachable if all resistances of branches belonging to two linearly independent meshes are zero.
Go to article

Abstract

The concept of inverse systems for standard and positive linear systems is introduced. Necessary and sufficient conditions for the existence of the positive inverse system for continuous-time and discrete-time linear systems are established. It is shown that: 1) The inverse system of continuous-time linear system is asymptotically stable if and only if the standard system is asymptotically stable. 2) The inverse system of discrete-time linear system is asymptotically stable if and only if the standard system is unstable. 3) The inverse system of continuous-time and discrete-time linear systems are reachable if and only if the standard systems are reachable. The considerations are illustrated by numerical examples.
Go to article

This page uses 'cookies'. Learn more