Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:

Abstract

The presence of lipopolysaccharide (LPS) in blood induces an inflammatory response which leads to multiple organ dysfunction and numerous metabolic disorders. Uncontrolled, improper or late intervention may lead to tissue hypoxia, anaerobic glycolysis and a disturbance in the acid -base balance. The effects of LPS-induced toxemia on biological and immunological markers were well studied. However, parameters such as base excess, ions, and acid-base balance were not fully investigated. Therefore, the objective of this study was to examine these blood parameters collectively in LPS-induced inflammatory toxemia in rat’s model. After induction of toxemia by injecting LPS at a rate of 5 mg/kg body weight intravenously, blood was collected from the tail vein of twenty rats and immediately analyzed. After 24 hours, the animals were sacrificed and the blood was collected from the caudal vena cava. The results revealed that the levels of pH, bicarbonate, partial pressure of oxygen, oxygen saturation, Alveolar oxygen, hemoglobin, hematocrit, magnesium (Mg2+), and calcium (Ca2+) were significantly decreased. On the other side, the levels of Base excess blood, Base excess extracellular fluid, partial pressure of carbon dioxide, lactate, Ca2+/Mg2+, potassium, and chloride were significantly increased compared to those found pre toxemia induction. However, sodium level showed no significant change. In conclusion, Acute LPS-toxemia model disturbs acid-base balance, blood gases, and ions. These parameters can be used to monitor human and animal toxemic inflammatory response induced by bacterial LPS conditions to assist in the management of the diagnosed cases.
Go to article

Abstract

The pool boiling characteristics of dilute dispersions of alumina, zirconia and silica nanoparticles in water were studied. These dispersions are known as nanofluids. Consistently with other nanofluid studies, it was found that a significant enhancement in Critical Heat Flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). Buildup of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly improves the surface wettability, as shown by a reduction of the static contact angle on the nanofluid-boiled surfaces compared with the pure-water-boiled surfaces. CHF theories support the nexus between CHF enhancement and surface wettability changes. This represents a first important step towards identification of a plausible mechanism for boiling CHF enhancement in nanofluids.
Go to article

Abstract

Nanostructured thermoelectric materials receiving great attention for its high thermoelectric performance. In this research, nanostructured n-type Bi2Te2.7Se0.3 alloys have prepared using high energy ball milling and followed by spark plasma sintering. Also, we have varied ball milling time to investigate milling time parameter on the thermoelectric properties of n-type Bi2Te2.7Se0.3 powder. The powders were discrete at 10 min milling and later particles tend to agglomerate at higher milling time due to cold welding. The bulk fracture surface display multi-scale grains where small grains intersperse in between large grains. The maximum Seebeck coefficient value was obtained at 20-min milling time due to their lower carrier density. The κ values were decreased with increasing milling time due to the decreasing trend observed in their κL values. The highest ZT of 0.7 at 350 K was observed for 30-min milling time which was ascribed to its lower thermal conductivity. The Vickers hardness values also greatly improved due to their fine microstructure.
Go to article

This page uses 'cookies'. Learn more