We introduce seven new versions of the Kirchhoff-Law-Johnson-(like)-Noise (KLJN) classical physical secure key exchange scheme and a new transient protocol for practically-perfect security. While these practical improvements offer progressively enhanced security and/or speed for non-ideal conditions, the fundamental physical laws providing the security remain the same. In the "intelligent" KLJN (iKLJN) scheme, Alice and Bob utilize the fact that they exactly know not only their own resistor value but also the stochastic time function of their own noise, which they generate before feeding it into the loop. By using this extra information, they can reduce the duration of exchanging a single bit and in this way they achieve not only higher speed but also an enhanced security because Eve’s information will significantly be reduced due to smaller statistics. In the "multiple" KLJN (MKLJN) system, Alice and Bob have publicly known identical sets of different resistors with a proper, publicly known truth table about the bit-interpretation of their combination. In this new situation, for Eve to succeed, it is not enough to find out which end has the higher resistor. Eve must exactly identify the actual resistor values at both sides. In the "keyed" KLJN (KKLJN) system, by using secure communication with a formerly shared key, Alice and Bob share a proper time-dependent truth table for the bit-interpretation of the resistor situation for each secure bit exchange step during generating the next key. In this new situation, for Eve to succeed, it is not enough to find out the resistor values at the two ends. Eve must also know the former key. The remaining four KLJN schemes are the combinations of the above protocols to synergically enhance the security properties. These are: the "intelligent-multiple" (iMKLJN), the "intelligent-keyed" (iKKLJN), the "keyed-multiple" (KMKLJN) and the "intelligent-keyed-multiple" (iKMKLJN) KLJN key exchange systems. Finally, we introduce a new transient-protocol offering practically-perfect security without privacy amplification, which is not needed in practical applications but it is shown for the sake of ongoing discussions.
Products of Gaussian noises often emerge as the result of non-linear detection techniques or as parasitic effects, and their proper handling is important in many practical applications, including fluctuation-enhanced sensing, indoor air or environmental quality monitoring, etc. We use Rice’s random phase oscillator formalism to calculate the power density spectra variance for the product of two Gaussian band-limited white noises with zero-mean and the same bandwidth W. The ensuing noise spectrum is found to decrease linearly from zero frequency to 2W, and it is zero for frequencies greater than 2W. Analogous calculations performed for the square of a single Gaussian noise confirm earlier results. The spectrum at non-zero frequencies, and the variance of the square of a noise, is amplified by a factor two as a consequence of correlation effects between frequency products. Our analytic results are corroborated by computer simulations.
There is an ongoing debate about the fundamental security of existing quantum key exchange schemes. This debate indicates not only that there is a problem with security but also that the meanings of perfect, imperfect, conditional and unconditional (information theoretic) security in physically secure key exchange schemes are often misunderstood. It has been shown recently that the use of two pairs of resistors with enhanced Johnsonnoise and a Kirchhoff-loop ‒ i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol ‒ for secure key distribution leads to information theoretic security levels superior to those of today’s quantum key distribution. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. The KLJN system is briefly surveyed here with discussions about the essential questions such as (i) perfect and imperfect security characteristics of the key distribution, and (ii) how these two types of securities can be unconditional (or information theoretical).