Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:

Abstract

Dynamic angle measurement (DAM) plays an important role in precision machining, aerospace, military and artificial intelligence. Because of its advantages including high sensitivity, solid state and miniaturization, fibre-optic gyroscope (FOG) has great application prospects in the field of DAM. In this paper, we propose a dynamic angle metrology method based on FOG and a rotary table to evaluate the DAMaccuracy with FOG. The system synchronously collects data from the FOG and rotary table, and analyses the DAM accuracy of the FOG for different sway conditions compared with that of the angle obtained from the rotary table. An angle encoder in the rotary table provides absolute or incremental angular displacement output with angular displacement measurement accuracy of 10′′ (0:0028◦) and angular displacement repeat positioning accuracy of 3′′ (0:00083◦), and can be used as an angle reference. The experimental results show that the DAM accuracy of the FOG is better than 0:0028◦ obtained with the angular encoder, and the absolute DAM accuracy of the FOG is better than 0:0048◦ for given conditions. At the same time, for the multi-path signal synchronization problem in the metrology field, this paper proposes a signal delay measurement method combining test and algorithm procedures, which can control a delay within 25 #22;s.
Go to article

Abstract

An isogeometric boundary element method is applied to simulate wave scattering problems governed by the Helmholtz equation. The NURBS (non-uniform rational B-splines) widely used in the CAD (computer aided design) field is applied to represent the geometric model and approximate physical field variables. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The singular integrals existing in Burton-Miller formulation are evaluated directly and accurately using Hadamard’s finite part integration. Fast multipole method is applied to accelerate the solution of the system of equations. It is demonstrated that the isogeometric boundary element method based on NURBS performs better than the conventional approach based on Lagrange basis functions in terms of accuracy, and the use of the fast multipole method both retains the accuracy for isogeometric boundary element method and reduces the computational cost.
Go to article

Abstract

As one of the key techniques in the fully mechanized mining process, equipment selection and matching has a great effect on security, production and efficiency. The selection and matching of fully mechanized mining equipment in thin coal seam are restricted by many factors. In fully mechanized mining (FMM) faced in thin coal seams (TCS), to counter the problems existing in equipment selection, such as many the parameters concerned and low automation, an expert system (ES) of equipment selection for fully mechanized mining longwall face was established. A database for the equipment selection and matching expert system in thin coal seam, fully mechanized mining face has been established. Meanwhile, a decision-making software matching the ES was developed. Based on several real world examples, the reliability and technical risks of the results from the ES was discussed. Compared with the field applications, the shearer selection from the ES is reliable. However, some small deviations existed in the hydraulic support and scraper conveyor selection. Then, the ES was further improved. As a result, equipment selection in fully mechanized mining longwall face called 4301 in the Liangshuijing coal mine was carried out by the improved ES. Equipment selection results of the interface in the improved ES is consistent with the design proposal of the 4301 FMM working face. The reliability of the improved ES can meet the requirements of the engineering. It promotes the intelligent and efficient mining of coal resources in China.
Go to article

Abstract

In vitro embryogenic callus is a critical factor for genetic transformation of rice, especially for indica varieties. In this study, we investigated the relationship between polyamines, including putrescine (Put), spermidine (Spd) and spermine (Spm), and callus browning, and we studied the effect of exogenous Put on callus regeneration and on the content of endogenous polyamines. In addition, the expression levels of arginine decarboxylase gene (Adcl) and S-adenosylmethionine decarboxylase gene (Samdc) in embryogenic callus were studied by quantitative Real-time PCR analysis. The results showed that the contents of endogenous Put and Spd in the browning callus were significantly lower than those in normal callus. Exogenous Put could effectively improve the growing state of callus of indica rice and enhance the development of embryogenic callus. The content of endogenous polyamines in embryogenic callus, especially Spd and Spm, was increased after addition of exogenous Put. Additionally, exogenous Put also had an obvious impact on the expression levels of Adcl but partial effect on the expression levels of Samdc gene. This study could increase the knowledge of both embryogenic callus induction and polyamine catabolism in callus in indica rice.
Go to article

Abstract

For most precious metal mines, cemented tailings backfill slurry (CTBS) with different cement-sand ratio and solid concentration are transported into the gobs to keep the stability of the stope and mitigate environmental pollution by mine tailing. However, transporting several kinds of CTBS through the same pipeline will increase the risk of pipe plugging. Therefore, the joint impacts of cement-sand ratio and solid concentration on the rheological characteristics of CTBS need a more in-depth study. Based on the experiments of physical and mechanical parameters of fresh slurry, the loss of pumping pressure while transporting CTBS with different cement-sand ratio, flux and solid mass concentration were measured using pumping looping pipe experiments to investigate the joint impacts of cement-sand ratio and solid concentration on the rheological characteristics of CTBS. Meanwhile, the effect of different stopped pumping time on blockage accident was revealed and discussed by the restarting pumping experiments. Furthermore, Fluent software was applied to calculate the pressure loss and velocity distribution in the pipeline to further analysis experimental results. The overall trends of the simulation results were good agreement with the experiment results. Then, the numerical model of the pipeline in the Sanshandao gold mine was conducted to simulate the characteristics of CTBS pipeline transportation. The results show that the pumping pressure of the delivery pump can meet the transportation requirements when there is no blockage accident. This can provide a theoretical method for the parameters optimizing in the pipeline transportation system.
Go to article

This page uses 'cookies'. Learn more