Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Sperm-mediated gene transfer (SMGT) is based on the ability of spermatozoa to bind exoge- nous DNA and transfer it into oocytes by fertilization. However, SMGT is still undergoing opti- mization to improve its efficiency to produce transgenic animals. The acrosome reaction is neces- sary for spermatozoa to carry the exogenous DNA into oocytes. In this study, the effect of the acrosome reaction on the efficiency of spermatozoa carrying exogenous DNA was evalua- ted. The results showed that the efficiency of the acrosome reaction was significantly higher (p<0.05) after incubation with 50 μmol/L progesterone compared to incubation without proges- terone. It was significantly higher (p<0.05) in the 20, 40, and 60 min of progesterone treatment groups than in the 0 min treatment group. The spermatozoa were further incubated with cyanine dye Cy5 labeled DNA (Cy5-DNA) for 30 min at 37°C, and positive fluorescence signals were detected after the acrosome reaction was induced by progesterone at concentrations of 0 and 50 μmol/L for 40 min. The percentage of positive Cy5-DNA signals in spermatozoa was 96.61±2.06% and 97.51±2.03% following exposure to 0 and 50 μmol/L progesterone, respective- ly. The percentage of partial spermatozoa heads observed following combination with Cy5-DNA was 39.73±3.03% and 56.88±3.12% following exposure to 0 and 50 μmol/L progesterone, respec- tively. The ratio of positively stained spermatozoa combined with exogenous DNA showed no reduction after the acrosome reaction. These results suggest that the acrosome reaction might not be the key factor affecting the efficiency of SMGT.
Go to article

Abstract

The work reports on the development of random three-dimensional Laguerre-Voronoi computational models for open cell foams. The proposed method can accurately generate foam models having randomly distributed parameter values. A three-dimensional model of ceramic foams having pre-selected cell volumes distribution with stochastic coordinates and orientations was created in the software package ANSYSTM. Different groups of finite element models were then generated using the developed foam modeling procedure. The size sensitivity study shows that each of foam specimens at least contains 125 LV-cells. The developed foam models were used to simulate the macroscopic elastic properties of open cell foams under uni-axial and bi-axial loading and were compared with the existing open cell foam models in the literature. In the high porosity regime, it is found that the elastic properties predicted by random Laguerre-Voronoi foam models are almost the same as those predicted by the perfect Kelvin foam models. In the low porosity regime the results of the present work deviate significantly from those of other models in the literature. The results presented here are generally in better agreement with experimental data than other models. Thus, the Laguerre-Voronoi foam models generated in this work are quite close to real foam topology and yields more accurate results than other open cell foam models.
Go to article

This page uses 'cookies'. Learn more