Search results

Filters

  • Journals

Search results

Number of results: 4
items per page: 25 50 75
Sort by:

Abstract

Many studies have been developed aiming to improve digital filters realizations, recurring to intricate structures and analyzing probabilistically the error's behavior. The work presented in this paper analyzes the feasibility of fixed-point implementation of classical infinite impulse response notch filters: Butterworth, Chebyshev I and II, and elliptic. To scrutinize the deformations suffered for distinct design specifications, it is assessed: the effect of the quality factor and normalized cut-off frequency, in the number of significant bits necessary to represent the filter's coefficients. The implications brought to FPGA implementation are also verified. The work focuses especially on the implementation of power line notch filters used to improve the signal-to-noise ratio in biomedical signals. The results obtained, when quantizing the digital notch filters, show that by applying second-order sections decomposition, low-order digital filters may be designed using only part of double precision capabilities. High-order notch filters with harsh design constraints are implementable using double precision, but only in second-order sections. Thus, it is revealed that to optimize computation time in real-time applications, an optimal digital notch filter implementation platform should have variable arithmetic precision. Considering these implementation constraints, utmost operation performance is finally estimated when implementing digital notch filters in Xilinx Virtex-5 field-programmable gate arrays. The influence of several design specifications, e.g. type, and order, in the filter's behavior was evaluated, namely in regard to order, type, input and coefficient number of bits, quality factor and cut-off frequency. Finally the implications and potential applications of such results are discussed.
Go to article

Abstract

This paper presents a voltammetric segmented voltage sweep mode that can be used to identify and measure heavy metals' concentrations. The proposed sweep mode covers a set of voltage ranges that are centered around the redox potentials of the metals that are under analysis. The heavy metal measurement system can take advantage of the historical database of measurements to identify the metals with higher concentrations in a given geographical area, and perform a segmented sweep around predefined voltage ranges or, alternatively, the system can perform a fast linear voltage sweep to identify the voltammetric current peaks and then perform a segmented voltage sweep around the set of voltages that are associated with the voltammetric current peaks. The paper also includes the presentation of two auto-calibration modes that can be used to improve system's reliability and proposes the usage of a Gaussian curve fitting of voltammetric data to identify heavy metals and to evaluate their concentrations. Several simulation and experimental results, that validate the theoretical expectations, are also presented in the paper.
Go to article

Abstract

Embedding cardiac system sensing devices in wheelchairs is both necessary and attractive. Elders, diabetics, or stroke victims are a substantial group needing permanent cardiac monitoring, without restriction of their already limited mobility. A set of sensing devices was embedded in a wheelchair to monitor the user without his awareness and intervention. A dual-wavelength reflection photoplethysmogram (PPG), and a ballistocardiogram (BCG) based on MEMS accelerometers and on electromechanical film sensors are output by the hardware. Tests were conduced on twenty one subjects, for an immobility scenario. Additional recordings were made for helped propulsion over a tiled floor course, with good results in keeping track of acceleration BCG and PPG. A treadmill was also used for tests, providing a smooth floor and constant speed and inclination. The PPG and acceleration BCG could be continuously monitored in all the tests. The developed system proves to be a good solution to monitor cardiac activity of wheelchair users even during motion.
Go to article

Abstract

This paper presents a low-cost and smart measurement system to acquire and analyze mechanical motion parameters. The measurement system integrates several measuring nodes that include one or more triaxial accelerometers, a temperature sensor, a data acquisition unit and a wireless communication unit. Particular attention was dedicated to measurement system accuracy and compensation of measurement errors caused by power supply voltage variations, by temperature variations and by accelerometers’ misalignments. Mathematical relationships for error compensation were derived and software routines for measurement system configuration, data acquisition, data processing, and self-testing purposes were developed. The paper includes several simulation and experimental results obtained from an assembled prototype based on a crank-piston mechanism
Go to article

This page uses 'cookies'. Learn more