Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The arbuscules of mycorrhizae develop within apoplastic compartments of the host plant, as they are separated from the cell protoplast by an interfacial matrix continuous with the plant cell wall. Expansins are proteins that allow cell wall loosening and extension. Using fluorescence and electron microscopy we located the NtEXPA5 epitopes recognized by polyclonal antibody anti-NtEXPA5 in mycorrhizal tobacco roots. The expansin protein was localized mainly within the interfacial matrix of intracellular hyphae, arbuscule trunk and main branches. NtEXPA5 proteins were detected neither within the interface of collapsing arbuscule branches nor in non-colonized cortex cells. In plant cell walls, expansin protein was detected only at the penetration point and in the parts of cell walls that adhered firmly to fungal hyphae growing intracellularly. For the first time, NtEXPA5 protein was localized ultrastructurally in hyphae growing intracellularly at the interface of the hypha tip and sites of bending. The novel localization of NtEXPA5 protein suggests that this protein may be involved in the process of arbuscule formation: that is, in promoting apical hyphal growth and arbuscule ramification, as well as in controlling the dynamic of arbuscule mycorrhiza development.
Go to article

Abstract

Eyespot is one of the most important fungal diseases of the stem base of wheat (Triticum aestivum L.). The presented study clearly demonstrated that the Pch1 gene was the main effective source for reducing the eyespot disease score in the analyzed winter wheat lines. Nevertheless, Pch1 was present only in 8−9% of the investigated lines. Using an isoenzymatic marker and molecular markers, the presence of the Pch1 gene and lack of the Pch2 gene was identified in six lines. Two lines, SMH 9409 and DL 358/13/4, were polymorphic in an isoenzymatic marker study. In the remaining three lines, C 3373/11-1, KBH 15.15 and KBP 1416, the Pch1 gene was identified only with the use of an isoenzymatic marker. Both genes Pch1 and Pch2, as well as the resistant variety Rendezvous, were found in three lines: DD 248/12, KBP 15.2 and STH 4431. In line DD 708/13, the presence of the Pch1 and Pch2 genes was identified, where the association between the Pch1 and the locus of the Xorw5 marker was broken. It was shown that the presence or absence of Pch1 and Pch2 genes did not significantly affect the grain yield (from the plot), although the yield was highest in the presence of both genes. A significant effect of the presence of the Pch1 gene on thousand kernel weight (TKW) was observed. Lines with the Pch1 gene showed significantly higher TKW values than lines without both genes or with the Pch2 gene only.
Go to article

This page uses 'cookies'. Learn more