Search results

Filters

  • Journals
  • Date

Search results

Number of results: 40
items per page: 25 50 75
Sort by:

Abstract

A novel phase shift full bridge (PSFB) converter with voltage-doubler and decoupling integrated magnetics in photovoltaic (PV) systems is proposed. Considering the demand that the output voltage is higher than the input voltage in PV systems, the voltage-doubler is added to achieve higher voltage gain compared with the traditional PSFB. In order to avoid current oscillation caused by the voltage-doubler and obtain the wide zero voltage switching (ZVS) ranges, an external inductor is imposed on the circuit. Especially, to obtain much higher power density, the external inductor and transformer are integrated into one magnetic core. The operation and voltage gain of proposed converter are analyzed. Also, in order to reveal the effects the integrated magnetics gives to the converter, the decoupling condition and the expression of leakage inductor of integrated magnetics are obtained in detail. Finally a 100 W prototype converter is made and the experimental results are given to verify the analysis.
Go to article

Abstract

Macroporous silica fibers having spherical cavities were fabricated by electrospinning using the spinning solution prepared from the mixed dispersion of tetraethylorthosilicate (TEOS) and polystyrene nanospheres as precursor and sacrificial templates, respectively, by injection through metallic nozzle. By applying electric field, the electro-spun fibers obtained by evaporation-driven self-assembly were collected on flat substrate or rotating drum, followed by the removal of the templates by calcination. The sound absorption coefficient of the porous fibers was measured by impedance tube, and the measured value was larger than 0.9 at high frequency region of incident waves. The surface of the resulting fibers was modified using fluorine-containing silane coupling agent to produce superhydrophobic fibrous materials to prevent the infiltration of humidity.
Go to article

Abstract

Nano-sized yttria (Y2O3) powders were synthesized by a polymer solution route using polyvinyl alcohol (PVA) as an organic carrier. The PVA polymer affected the dispersion of yttrium ions in precursor sol. In this study, three kinds of PVA polymer (different molecular weight) were applied for synthesis of yttria powder. The PVA type as well as calcination temperature had a strongly influence on the particle morphology. Single crystal nano wire particles were observed at the temperature of polymer burn out range and the size was dependent on the PVA type. The stable, fully crystallized yttria powder was obtained through the calcination at 800°C for 1 h. The yttria powder prepared with the high weight PVA (MW: 153,000) revealed a particle size of 30 nm with a surface area of 18.8 m2/g.
Go to article

Abstract

Y2O3-MgO nanocomposites are one of the most promising materials for hypersonic infrared windows and domes due to their excellent optical transmittance and mechanical properties. In this study, influence of the calcination temperature of Y2O3-MgO nanopowders on the microstructure, IR transmittance, and hardness of Y2O3-MgO nanocomposites was investigated. It was found that the calcination temperature is related to the presence of residual intergranular pores and grain size after spark plasma sintering. The nanopowders calcined at 1000°C exhibits the highest infrared transmittance (82.3% at 5.3 μm) and hardness (9.99 GPa). These findings indicated that initial particle size and distribution of the nanopowders are important factors determining the optical and mechanical performances of Y2O3-MgO nanocomposites.
Go to article

Abstract

The effect of additives on the densification behavior and mechanical properties of pure and additive (Zr, B and Mg)-added silica ceramics were investigated for their application to the matrix phase of a silica fiber reinforced silica (SiO2/SiO2f) composite. The additives affected the rate of densification and crystallization (or transformation) of the amorphous silica. Among the compositions, pure silica ceramics sintered at 900°C for 1 h showed the maximum flexural strength. Based on the results, SiO2/SiO2f was fabricated by a repeated vacuum-assisted infiltration method followed by the heat treatment at 900°C for 1 h. The relative density of the composite was 78.2% with a flexural strength of 22.4 MPa. Fractography revealed that the composite was damaged by strong bonding at the fiber/matrix interface and the fracture of fiber.
Go to article

This page uses 'cookies'. Learn more