Search results

Filters

  • Journals
  • Keywords
  • Date
  • Type

Search results

Number of results: 51
items per page: 25 50 75
Sort by:

Abstract

The article describes the influence of anomalous values and local variability on the structure of variability and the estimation of deposit parameters. The research was carried out using statistical and geostatistical methods based on the Pb accumulation index in the shale series in part of the Cu-Ag ore deposit, LGCD (Lubin-Głogów Copper District). The authors recommend the use of a geostatistical tool, the so-called semivariogram cloud to determine the anomalous values. Anomalous values determined by the geostatistical method and removed from the dataset have resulted in a significant reduction of the relative variability of data, which is still very large in the case of the analyzed parameter or parameters with similar statistical features such as extreme variability and strongly asymmetric distribution. Calculations of the resources of this element can be treated only as estimates and formally classified to category D. The hypothetical assumption of the absence of sampling errors, resulting in a decrease in the magnitude of local variation, leads to a certain reduction of the median error of resource estimates. However, they are still high (> 35%). This is due to the large natural variability of the accumulation index of Pb on the local observation scale. The current method for collecting samples from mine workings of the Cu-Ag deposits in the Lubin-Głogów Copper District (LGCD), aimed at the proper assessment of copper resources, the Cu content, and at estimating the quality of copper output, makes it impossible to achieve an accuracy of estimates of Pb resources similar to that obtained for the main metal. Theoretically, this effect can be achieved by a strong concentration of the sample collection points and thanks to a multiple increase in the samples weight; this, however, is unrealistic for both economic and organizational reasons. It is therefore to be expected that the assessment of Pb resources and other accompanying elements of similar statistical features (e.g. As), located in parts of the deposit where mining activities are to be carried out, will be subject to significant errors.
Go to article

Abstract

Secondary or multiple remelted alloys are common materials used in foundries. For secondary (recycled) Al-Si-Cu alloys, the major problem is the increased iron presence. Iron is the most common impurity and with presence of other elements in alloy creates the intermetallic compounds, which may negatively affect the structure. The paper deals with effect of multiple remelting on the microstructure of the AlS9iCu3 alloy with increased iron content to about 1.4 wt. %. The evaluation of the microstructure is focused on the morphology of iron-base intermetallic phases in caste state, after the heat treatment (T5) and after natural aging. The occurrence of the sludge phases was also observed. From the obtained results can be concluded that the multiple remelting leads to change of chemical composition, changes in the final microstructure and also increases sludge phases formation. The use of heat treatment T5 led to a positive change of microstructure, while the effect of natural aging is beneficial only to the 3rd remelting.
Go to article

Abstract

In this study, copper nanoparticles and nanofluids were synthesized by electrical explosion of wire (EEW) in liquid media such as water, ethanol, and acetone. The effect of the different conditions on the properties of the as-synthesized Cu powders and nanofluids were investigated. X-ray diffraction (XRD) analysis was employed to measure the phase of the as-synthesized powder. Only pure Cu phase appeared in case of acetone condition, but CuO and CuO2 phases could be observed in the others. The EEWed particle size was broadened from under 50 to 100 nm. The results showed that acetone was the best condition for achieving smaller particles, preventing the oxidation of the Cu particles and good stability of the nanofluids.
Go to article

Abstract

The paper deals with influence of multiple remelting on AlSi9Cu3 alloy with higher iron content on chosen mechanical properties. Multiple remelting may in various ways influence mechanical, foundry properties, gas saturation, shrinkage cavity, fluidity etc. of alloy. Higher presence of iron in Al-Si cast alloys is common problem mainly in secondary (recycled) aluminium alloys. In Al-Si alloy the iron is the most common impurity and with presence of other elements in alloy creates the intermetallic compounds, which decreases mechanical properties. Iron in the used alloy was increased to about 1.4 wt. %, so that the influence of increased iron content can be investigated. In the paper, the effect of multiple remelting is evaluated with respect to the resulting mechanical properties in cast state, after the heat treatment (T5) and after natural aging. From the obtained results it can be concluded that the multiple remelting leads to change of chemical composition and affect the mechanical properties.
Go to article

Abstract

As the most recent video coding standard, High Efficiency Video Coding (HEVC) adopts various novel techniques, including a quad-tree based coding unit (CU) structure and additional angular modes used for intra encoding. These new techniques achieve a notable improvement in coding efficiency at the penalty of significant computational complexity increase. Thus, a fast HEVC coding algorithm is highly desirable. In this paper, we propose a fast intra CU decision algorithm for HEVC to reduce the coding complexity, mainly based on a key-point detection. A CU block is considered to have multiple gradients and is early split if corner points are detected inside the block. On the other hand, a CU block without corner points is treated to be terminated when its RD cost is also small according to statistics of the previous frames. The proposed fast algorithm achieves over 62% encoding time reduction with 3.66%, 2.82%, and 2.53% BD-Rate loss for Y, U, and V components, averagely. The experimental results show that the proposed method is efficient to fast decide CU size in HEVC intra coding, even though only static parameters are applied to all test sequences.
Go to article

Abstract

Cu-Al-based high temperature shape memory alloys are preferred commonly due to their cheap costs and shape memory properties. In recent years, studies have been conducted on developing and producing a new type of Cu-Al based shape memory alloy. In this study, the CuAl-Cr alloy system, which has never been produced before, is investigated. After production, the SEMEDX measurements were made in order to determine the phases in the Cu84–xAl12Crx+4 (x = 0, 4, 6) (weight %) alloy system; and precipitate phases together with martensite phases were detected in the alloys. The confirmations of these phases were made via x-ray measurements. The same phases were observed by XRD diffractogram of the alloys as well. The values of transformation temperature of alloys were determined with Differential Scanning Calorimetry (DSC) at 20°C/min heating rate. According to the DSC results, the transformation temperature of the alloys varies between 320°C and 350°C. This reveals that the alloys show high temperature shape memory characteristics.
Go to article

Abstract

The paper presents the cellular automaton (CA) model for tracking the development of dendritic structure in non-equilibrium solidification conditions of binary alloy. Thermal, diffusion and surface phenomena have been included in the mathematical description of solidification. The methodology for calculating growth velocity of the liquid-solid interface based on solute balance, considering the distribution of the alloy component in the neighborhood of moving interface has been proposed. The influence of solidification front curvature on the equilibrium temperature was determined by applying the Gibbs Thomson approach. Solute and heat transfer equations were solved using the finite difference method assuming periodic boundary conditions and Newton cooling boundary condition at the edges of the system. The solutal field in the calculation domain was obtained separately for solid and liquid phase. Numerical simulations were carried out for the Al-4 wt.% Cu alloy at two cooling rates 15 K/s and 50 K/s. Microstructure images generated on the basis of calculations were compared with actual structures of castings. It was found that the results of the calculations are agreement in qualitative terms with the results of experimental research. The developed model can reproduce many morphological features of the dendritic structure and in particular: generating dendritic front and primary arms, creating, extension and coarsening of secondary branches, interface inhibition, branch fusion, considering the coupled motion and growth interaction of crystals.
Go to article

Abstract

Cu-Ni composite nanoparticles were successfully synthesized by electrical explosion of wire (EEW) method. Cu-Ni alloy and twisted wires with various Ni contents were used as the feeding material for a 3 kV charging voltage EEW machine in an ethanol ambient chamber. The phase structure and magnetic properties of the as-fabricated samples were studied. It was established that the prepared powders after drying have a spherical form with the particle size is under 100 nm. XRD analysis indicated that the nanopowders consisted of binary Cu-Ni phases. Only pure phases of the intermetallic compound Cu-Ni (Cu0.81Ni0.19 and Cu3.8Ni) were observed in the XRD patterns of the samples. The synthesized intermetallic Cu-Ni alloy nanopowders reveal magnetic behaviors, however, the lower Ni content samples exhibited paramagnetic behaviors, meanwhile, the higher Ni content samples exposed ferromagnetic properties.
Go to article

Abstract

Al-CuO is a thermite material exhibiting the exothermic reaction only when aluminum melts. For wide spread of its application, the reaction temperature needs to be reduced in addition to the enhancement of total reaction energy. In the present study, a thermite nanocomposite with a large contact area between Al and CuO was fabricated in order to lower the exothermic reaction temperature and to improve the reactivity. A cryomilling process was performed to achieve the nanostructure, and the effect of composition on the microstructure and its reactivity was studied in detail. The microstructure was characterized using SEM and XRD, and the thermal property was analyzed using DSC. The results show that as the molar ratio between Al and CuO varies, the fraction of uniform nanocomposite structure was changed affecting the exothermic reaction characteristics.
Go to article

Abstract

Ag and Cu powders were mechanically alloyed using high-energy planetary milling to evaluate the sinter-bonding characteristics of a die-attach paste containing particles of these two representative conductive metals mixed at atomic scale. This resulted in the formation of completely alloyed Ag-40Cu particles of 9.5 µm average size after 3 h. The alloyed particles exhibited antioxidation properties during heating to 225°C in air; the combination of high pressure and long bonding time at 225°C enhanced the shear strength of the chip bonded using the particles. Consequently, the chips sinter-bonded at 225°C and 10 MPa for 10 min exhibited a sufficient strength of 15.3 MPa. However, an increase in bonding temperature to 250°C was detrimental to the strength, due to excessive oxidation of the alloyed particles. The mechanically alloyed phase in the particle began to decompose into nanoscale Ag and Cu phases above a bonding temperature of 225°C during heating.
Go to article

Abstract

Al-4.5Cu alloys are widely used in aerospace industries due to their low weight and high mechanical properties. This group of aluminium alloys is known as 2xx series and exhibits the highest mechanical properties however this alloy is known to suffer from feedability and high tendency for hot tearing. Al-Si alloys (3xx) have improved fluidity and better feedability particularly by several modifications such as Ti, B or Sr. Eutectic temperature is decreased and mechanical properties can be enhanced. Yet, the strength values of this alloy group cannot reach the values of 2xx series. Therefore, in this study, the effect of Ag addition on the fluidity of Al-4.5Cu alloy has been investigated. Standard size spiral mould was used. The casting temperature was selected to be 770oC. Five castings were made and Weibull statistical approach was used to evaluate the results. In addition, coating of the die with BN was also investigated. It was found that Ag addition and BN coating of the die revealed the most reproducible, reliable and high fluidity values.
Go to article

Abstract

Mechanical properties of an Al-alloy die casting depend significantly on its structural properties. Porosity in Al-alloy castings is one of the most frequent causes of waste castings. Gas pores are responsible for impaired mechanical-technological properties of cast materials. On the basis of a complex evaluation of experiments conducted on AlSi9Cu3 alloy samples taken from the upper engine block which was diecast with and without local squeeze casting it can be said that castings manufactured without squeeze casting exhibit maximum porosity in the longitudinal section. The area without local squeeze casting exhibits a certain reduction in mechanical properties and porosity increased to as much as 5%. However, this still meets the norms set by SKODA AUTO a.s.
Go to article

Abstract

The paper presents the results of studies on the effect of the AlSi17Cu5 alloy overheating to atemperature of 920°C and modification with phosphorus (CuP10) on the resultingmechanical (HB, Rm, R0.2) and plastic (A5 and Z) properties. It has been shown that, so-called, "timethermal treatment" (TTT) of an alloy in the liquid state, consisting inoverheating the metal to about 250°C above Tliq,holding at this temperature by 30 minutes improvesthe mechanical properties. It has also been found that overheating of alloy above Tliq.enhances the process of modification, resulting in the formation of fine-grain structure. The primary silicon crystals uniformly distributed in the eutectic and characteristics ofthe α(Al) solution supersaturated with alloying elements present in the starting alloy composition (Cu, Fe) provide not only an increase of strength at ambient temperature but also at elevated temperature (250°C).
Go to article

Abstract

Cu–4.7 wt. % Sn alloy wire with Ø10 mm was prepared by two-phase zone continuous casting technology, and the temperature field, heat and fluid flow were investigated by the numerical simulated method. As the melting temperature, mold temperature, continuous casting speed and cooling water temperature is 1200 °C, 1040 °C, 20 mm/min and 18 °C, respectively, the alloy temperature in the mold is in the range of 720 °C–1081 °C, and the solid/liquid interface is in the mold. In the center of the mold, the heat flow direction is vertically downward. At the upper wall of the mold, the heat flow direction is obliquely downward and deflects toward the mold, and at the lower wall of the mold, the heat flow deflects toward the alloy. There is a complex circular flow in the mold. Liquid alloy flows downward along the wall of the mold and flows upward in the center.
Go to article

Abstract

The ecological meanings clearly indicates the need of reducing of the concentration of the CO2in the atmosphere, which can be accomplished through the lowering of the fuel consumption. This fact implies the research for the new construction solutions regarding the reduction of the weight of vehicles. The reduced weight of the vehicle is also important in the case of application of the alternative propulsion, to extend the lifetime of the batteries with the reduction of recharge cycles. The use of cast alloy AlZnMgCu compliant of plastic forming class 7xxx alloy, are intended to significantly reduce the weight of the structures, while ensuring high strength properties. The wide range of the solidification temperature, which is more than 150°C, characterizes this alloy with a high tendency to create the micro and macro porosity. The study presents the relationship between the cooling rate and the area of occurrence and percentage of microporosity. Then the results were linked to the local tensile strength predicted in the simulation analysis. The evaluation of the microporosity was performed on the basis of the CT (computed tomography) and the analysis of the alloy microstructure. The microstructure analysis was carried out on test specimen obtained from the varying wall thickness of the experimental casting. The evaluation of the mechanical properties was prepared on the basis of the static tensile test and the modified low cycle fatigue test (MLCF).
Go to article

Abstract

Based on the example of the development process of the cast suspension of a special-purpose vehicle the application of the integrated engineering design methodology (ICME – Integrated Computational Materials Engineering) and the development of construction has been presented. Identification of the operating and critical loads, which are guidelines for carrying out the structure strength shaping process, material and technological conversion, are due to the needs and requirements of the suspension system and the purpose and objectives of the special mobile platform. The developed cast suspension element construction includes the use of high-strength AlZnMgCu aluminum alloy. The properties of the used alloy and designed shape allows for the transfer of assumed operating loads in normal exploitation conditions and in the dynamic, critical loads to the susceptibility to damage in the assumed casting areas. For the proposed design, conducted numerical analyzes includes the impact of the shock wave pulse on the occurrence of the destructive stress fields. Based on their distribution, the areas of possible decomposition of the structure of the design element were estimated. The results allowed to devise an element with predicted destructions that allow to absorb a significant part of the impact energy of the shock wave front, which is also the buffer zone for the propagation of destruction for the critical kinematic nodes of the system.
Go to article

Abstract

Determined were direction and intensity of influence of alloying additions on the number of eutectic graphite colonies in austenitic cast iron Ni-Mn-Cu. Chemical composition of the cast iron was 1.7 to 3.3% C, 1.4 to 3.1% Si, 2.8 to 9.9% Ni, 0.4 to 7.7% Mn, 0 to 4.6% Cu, 0.14 to 0.16% P and 0.03 to 0.04% S. Analysed were structures of mottled (20 castings) and grey (20 castings) cast iron. Obtained were regression equations determining influence intensity of individual components on the number of graphite colonies per 1 cm2 (LK). It was found that, in spite of high total content of alloying elements in the examined cast iron, the element that mainly decides the LK value is carbon, like in a plain cast iron.
Go to article

Abstract

In the paper, a relationship between chemical composition of Ni-Mn-Cu cast iron and its structure, hardness and corrosion resistance is determined. The examinations showed a decrease of thermodynamic stability of austenite together with decreasing nickel equivalent value, in cast iron solidifying according to both the stable and the metastable systems. As a result of increasing degree of austenite transformation, the created martensite caused a significant hardness increase, accompanied by small decline of corrosion resistance. It was found at the same time that solidification way of the alloy and its matrix structure affect corrosion resista
Go to article

Abstract

Within the presented work, the effect of austenite transformation on abrasive wear as well as on rate and nature of corrosive destruction of spheroidal Ni-Mn-Cu cast iron was determined. Cast iron contained: 3.1÷3.4 %C, 2.1÷2.3 %Si, 2.3÷3.3 %Mn, 2.3÷2.5 %Cu and 4.8÷9.3 %Ni. At a higher degree of austenite transformation in the alloys with nickel equivalent below 16.0%, abrasive wear resistance was significantly higher. Examinations of the corrosion resistance were carried out with the use of gravimetric and potentiodynamic method. It was shown that higher degree of austenite transformation results in significantly higher abrasive wear resistance and slightly higher corrosion rate, as determined by the gravimetric method. However, results of potentiodynamic examinations showed creation of a smaller number of deep pinholes, which is a favourable phenomenon from the viewpoint of corrosion resistance.
Go to article

Abstract

The paper presents influence of soaking parameters (temperature and time) on structure and mechanical properties of spheroidal graphite nickel-manganese-copper cast iron, containing: 7.2% Ni, 2.6% Mn and 2.4% Cu. Raw castings showed austenitic structure and relatively low hardness (150 HBW) guaranteeing their good machinability. Heat treatment consisted in soaking the castings within 400 to 600°C for 2 to 10 hours followed by air-cooling. In most cases, soaking caused changes in structure and, in consequence, an increase of hardness in comparison to raw castings. The highest hardness and tensile strength was obtained after soaking at 550°C for 6 hours. At the same time, decrease of the parameters related to plasticity of cast iron (elongation and impact strength) was observed. This resulted from the fact that, in these conditions, the largest fraction of fine-acicular ferrite with relatively high hardness (490 HV0.1) was created in the matrix. At lower temperatures and after shorter soaking times, hardness and tensile strength were lower because of smaller degree of austenite transformation. At higher temperatures and after longer soaking times, fine-dispersive ferrite was produced. That resulted in slightly lower material hardness.
Go to article

Abstract

The paper presents the results of study on heavy metals in needles of Pinus sylvestris in selected pine forests in Słowiński National Park. It was evidenced that heavy metal contents (Zn, Cu, Mn and Fe) in needles of Pinus sylvestris varied depending on the metal, the age of the needles and the humidity of a forest complex. Variation coefficients of such metals remained at the level of: 13-30% (Zn), 3-6% (Cu), 13-34% (Mn) and 12-30% (Fe) depending on the age of the needles. In the case of Zn, Mn and Fe higher concentrations of researched metal were found in the 2-year-old needles than in 1 year old needles, and in the case of Cu in 1 year old needles than in 2-year-old needles. The increase of zinc concentration found in 1-year-old needles after rainfall sums was (Bw, r = 0.67, p < 0.05, n = 24) and (Bśw, r = 0.39, p < 0.05, n = 24) in 2-year-old needles. The content of the above mentioned metals in needles of dry coniferous forests (Bs), fresh coniferous forests (Bśw) and humid coniferous forests (Bw) of the ground cover constitute the following decreasing series: Mn(323.8) > Fe(103.4) > Zn(65.5) > Cu(5.9).
Go to article

Abstract

The article presents the investigations of 7xxx aluminium alloys performed by the method of thermal and derivational analysis. The studies made it possible to identify the effect of the changes in the Cu concentration, the total Zn and Mg weight concentrations and the Zn/Mg weight concentration ratio on their crystallization process: the cooling as well as the kinetics and dynamics of the thermal process of cooling and crystallization. Metallographic studies were performed on the microstructure of the examined alloys and their HB hardness was measured. The evaluation of the changes was presented in reference to the model alloys EN AW-7003 and EN AW-7010, whose microstructure under the conditions of thermodynamic equilibrium are described by the phase diagrams: Al-Zn-Mg and Al-Zn-Mg-Cu. The performed investigations confirmed that the hardness HB of the examined alloys is mainly determined by the reinforcement of the matrix αAl by the introduced alloy additions and the presence of phases Θ(Al2Cu) and S(Al2CuMg) rich in copper, as well as η(MgZn2), in the examined alloys' microstructure. The increase of the amount of intermetallic phases precipitated in the microstructure of the examined alloys is caused, beside Cu, by the characteristic change of Zn wt. concentration and Mg. It was proposed that the process of one-stage thermal treatment of the examined alloys be introduced at a temperature of up to tJ-20 °C, which will prevent the exceedance of the solidus temperature.
Go to article

Abstract

Polish Academy of Sciences, Institute of Chemical Engineering, 44-100 Gliwice, Bałtycka 5, Poland A review concerning main processes of hydrogenation of carbon oxides towards synthesis of methanol, mixture of methanol and higher aliphatic alcohols and one-step synthesis of dimethyl ether as well as methanol steam reforming is given. Low-temperature methanol catalysts and lowtemperature modified methanol catalysts containing copper as primary component and zinc as secondary one are described.
Go to article

This page uses 'cookies'. Learn more