Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In general, uniform mixing of particles is desirable in the process of particle handling. However, during the charging of sinter feed and upper ore, size segregation must be induced to prevent heat imbalance, ensure bed permeability, and prevent the loss of fine ore. In this study, upper ore charging was simulated using a discrete element method (DEM) to find the optimal method for controlling particle size segregation, and the segregation characteristics in the upper ore bed were investigated when a deflector plate was applied to the charging machine. The degree of vertical segregation increased when a deflector plate was applied, and it was confirmed that the segregation direction in the upper ore bed can be controlled by adjusting the charging direction of the upper ore by using a deflector plate. In order to apply this method directly to the actual process, further study is needed to understand the influence of the characteristics of the deflector plate such as length and angle.
Go to article

Abstract

The paper contains a description of a multiscale algorithm based on the boundary element method (BEM) coupled with a discrete atomistic model. The atomic model uses empirical pair-wise potentials to describe interactions between atoms. The Newton-Raphson method is applied to solve a nanoscale model. The continuum domain is modelled by using BEM. The application of BEM reduces the total number of degrees of freedom in the multiscale model. Some numerical results of simulations at the nanoscale are shown to examine the presented algorithm.
Go to article

Abstract

A two-scale numerical homogenization approach was used for granular materials. At small-scale level, granular micro-structure was simulated using the discrete element method. At macroscopic level, the finite element method was applied. An up-scaling technique took into account a discrete model at each Gauss integration point of the FEM mesh to derive numerically an overall constitutive response of the material. In this process, a tangent operator was generated with the stress increment corresponding to the given strain increment at the Gauss point. In order to detect a loss of the solution uniqueness, a determinant of the acoustic tensor associated with the tangent operator was calculated. Some elementary geotechnical tests were numerically calculated using a combined DEM-FEM technique.
Go to article

This page uses 'cookies'. Learn more