Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In this paper, a novel structure of a compact UWB slot antenna and its design optimization procedure has been presented. In order to achieve a sufficient number of degrees of freedom necessary to obtain a considerable size reduction rate, the slot is parameterized using spline curves. All antenna dimensions are simultaneously adjusted using numerical optimization procedures. The fundamental bottleneck here is a high cost of the electromagnetic (EM) simulation model of the structure that includes (for reliability) an SMA connector. Another problem is a large number of geometry parameters (nineteen). For the sake of computational efficiency, the optimization process is therefore performed using variable-fidelity EM simulations and surrogate-assisted algorithms. The optimization process is oriented towards explicit reduction of the antenna size and leads to a compact footprint of 199 mm2 as well as acceptable matching within the entire UWB band. The simulation results are validated using physical measurements of the fabricated antenna prototype.
Go to article

Abstract

Compact radiators with circular polarization are important components of modern mobile communication systems. Their design is a challenging process which requires maintaining simultaneous control over several performance figures but also the structure size. In this work, a novel design framework for multi-stage constrained miniaturization of antennas with circular polarization is presented. The method involves se- quential optimization of the radiator in respect of selected performance figures and, eventually, the size. Optimizations are performed with iteratively increased number of design constraints. Numerical efficiency of the method is ensured using a fast local-search algorithm embedded in a trust-region framework. The proposed design framework is demonstrated using a compact planar radiator with circular polarization. The optimized antenna is characterized by a small size of 271 mm2 with 37% and 47% bandwidths in respect of 10 dB return loss and 3 dB axial ratio, respectively. The structure is benchmarked against the state-of-the-art circular polarization antennas. Numerical results are confirmed by measurements of the fabricated antenna prototype.
Go to article

Abstract

Design closure, i.e., adjustment of geometry parameters to boost the performance, is a challenging stage of antenna design process. Given complexity of contemporary structures, reliable parameter tuning requires numerical optimization and can be executed using local algorithms. Yet, EM-driven optimization is a computationally expensive endeavour and reducing its cost is highly desirable. In this paper, a modification of the trust-region gradient search algorithm is proposed for accelerated optimization of antenna structures. The algorithm is based on sparse updates of antenna sensitivities involving various methods that include the Broyden formula used for selected parameters, as well as dimensionality- and convergence-dependent acceptance thresholds which enable additional speedup, and make the procedure easy to tune for various numbers of antenna parameters. Comprehensive verification executed for a set of benchmark antennas delivers consistent results and considerable cost reduction of up to 60 percent with respect to the reference algorithm. Experimental validation is also provided.
Go to article

This page uses 'cookies'. Learn more