Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Wyniki wyszukiwania

Wyników: 7
Wyników na stronie: 25 50 75
Sortuj wg:

Abstrakt

The paper presents the results of theoretical analysis and experimental research on the material’s influence and tool geometry on the welding speed and mechanical strength of Al 2024 thin sheet metal joints. To make the joints, tungsten carbide and ceramics tools with a smooth and modified surface of the shoulder were used. The choice of the geometrical parameters of the tool was adjusted to the thickness of the joined sheet. During welding, the values of axial and radial force were recorded to determine the stability of the process. The quality of the joint was examined and evaluated on the basis of visual analysis of the surface and cross-sections of the joint area and the parent material, and subjected to mechanical strength tests. The test results indicate that both the geometry of the tool shoulder and the tool material have a decisive influence on the quality of the joint and the welding speed, making it possible to shorten the duration of the entire process.
Przejdź do artykułu

Abstrakt

The article contains basic information associated with the impact of the FSW process parameters on the forming of a weld while friction welding of aluminium casting alloys. Research was conducted using specially made samples containing a rod of casting alloy mounted in the wrought alloy in the selected area of FSW tool acting. Research has thrown light on the process of joining materials of significantly dissimilar physical properties, such as casting alloys and wrought alloys. Metallographic testing of a weld area has revealed the big impact of welding conditions, especially tool rotational speed, on the degree of metal stirring, grain refinement and shape factor of a weld. As the result of research it has been stated that at the high tool rotational speed, the metals stirring in a weld is significantly greater than in case of welding at low rotational speeds, however this fails to influence the strength of a weld. Plastic strain occurring while welding causes very high refinement of particles in the tested area and changing of their shape towards particles being more equiaxial. In the properly selected welding conditions it is possible to obtain joints of correct and repeatable structure, however in the case of the accumulation of cavities in the casting alloy the FSW process not always eliminates them.
Przejdź do artykułu

Abstrakt

Mechanical properties and residual stresses of friction stir welded and autogenous tungsten inert gas welded structural steel butt welds have been studied. Friction stir welding (FSW) of structural steel butt joints has been carried out by in-house prepared tungsten carbide tool with 20 mm/ min welding speed and 931 rpm tool rotation. Tungsten inert gas (TIG) welding of the butt joints was carried out with welding current, arc voltage and the welding speed of 140 amp, 12 V and 90 mm/min respectively. Residual stress measurement in the butt welds has been carried out in weld fusion zone and heat affected zone (HAZ) by using blind hole drilling method. The magnitude of longitudinal residual stress along the weld line of TIG welded joints were observed to be higher than friction stir welded joint. In both TIG and FSW joints, the nature of longitudinal stress in the base metal was observed to be compressive whereas in HAZ was observed to be tensile. It can be stated that butt welds produced with FSW process had residual stress much lower than the autogenous TIG welds.
Przejdź do artykułu

Abstrakt

The aim of the study was to analyse mechanical properties and microstructure of joints obtained using friction stir welding (FSW) technology. The focus of the study was on overlap linear FSW joints made of 1.4541 DIN 17441 steel sheets with thickness of 1.2 mm. Tools used during friction stir welding of steel joints were made of W-Re alloy. The joints were subjected to visual inspection and their load bearing capacity was evaluated by means of the tensile strength test with analysis of joint breaking mechanism. Furthermore, the joints were also tested during metallographic examinations. The analysis performed in the study revealed that all the samples of the FSW joints were broken outside the joint area in the base material of the upper sheet metal, which confirms its high tensile strength. Mean load capacity of the joints was 15.8 kN. Macroscopic and microscopic examinations of the joints did not reveal significant defects on the joint surface and in the cross-sections.
Przejdź do artykułu

Abstrakt

This work presents a numerical simulation of aviation structure joined by friction stir welding, FSW, process. The numerical simulation of aviation structure joined by FSW was created. The simulation uses thermomechanical coupled formulation. Th model required creation of finite elements representing sheets, stiffeners and welds, definition of material models and boundary conditions. The thermal model took into account heat conduction and convection assigned to appropriate elements of the structure. Time functions were applied to the description of a heat source movement. The numerical model included the stage of welding and the stage of releasing clamps. The output of the simulation are residual stresses and deformations occurring in the panel. Parameters of the global model (the panel model) were selected based on the local model (the single joint model), the experimental verification of the local model using the single joint and the geometry of the panel joints.
Przejdź do artykułu

Abstrakt

In the present study, butt joints of aluminum (Al) 8011-H18 and pure copper (Cu) were produced by friction stir welding (FSW) and the effect of plunge depth on surface morphology, microstructure and mechanical properties were investigated. The welds were produced by varying the plunge depth in a range from 0.1 mm to 0.25 mm. The defect-free joints were obtained when the Cu plate was fixed at the advancing side. It was found that less plunging depth gives better tensile properties compare to higher plunging depth because at higher plunging depth local thinning occurs at the welded region. Good tensile properties were achieved at plunge depth of 0.2 mm and the tensile strength was found to be higher than the strength of the Al (weaker of the two base metals). Microstructure study revealed that the metal close to copper side in the Nugget Zone (NZ) possessed lamellar alternating structure. However, mixed structure of Cu and Al existed in the aluminum side of NZ. Higher microhardness values were witnessed at the joint interfaces resulting from plastic deformation and the presence of intermetallics.
Przejdź do artykułu

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji