Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 27
items per page: 25 50 75
Sort by:

Abstract

This paper deals with the prevention of failure of structural elements made of reinforced concrete. It discusses preservice cracks in the concrete decks of an underground parking facility. The cracks were assessed by analyzing their morphology. The results were used to determine the crack causes and the mechanisms of their initiation and growth. Some design solutions to prevent or reduce the occurrence of pre-service cracks are also presented.
Go to article

Abstract

CFD (Computational Fluid Dynamics) computations are carried out in order to investigate the flow distribution and its influence on the heat transfer processes in the high-performance heat exchanger. The subject of this investigation is the classical model of the high-performance heat exchanger with elliptical tubes and rectangular fins. It is possible to find the flow domains where the heat transfer conditions are impaired due to the fully developed turbulent flow. Therefore, the considerable thermal loads occur that may cause the breakdown of the heat exchanger. The emphasis of this investigation is put on the zones and the locations where the tubes are not properly fed with liquid, that result in occurrence of cavitation.
Go to article

Abstract

B a c k g r o u n d: Heart failure (HF) is a life-threatening condition which aff ects up to 2% of contemporary populations. Generally, it is a chronic and progressive disease, however in many cases it can be prevented or treated. Nevertheless, effective control of this disease requires awareness of symptoms in the society. A i m s: The aim of the study was to assess the level of HF knowledge in the Polish population. M e t h o d s: The questionnaire concerning knowledge about HF prepared by the Competence Network HF under the patronage of the European Heart Failure Association of the ESC, was used. The survey included 534 contributors who formed three groups: medical students — in vast majority at fi rst half of the study course (MS) — 198 (37.1%), HF Awareness Day participants (HFDP) — 134 (25.1%) and other (OP) — 202 (37.8%). R e s u l t s: Study groups diff ered in terms of gender, age and level of education. As predicted, MS achieved the highest score (22.5 [20.0–24.0]), compared to HFDP (20.0 [17.0–22.0], P <0.001) and OP (19.0 [16.0– 21.0], P <0.001). Knowledge on typical HF symptoms was alarmingly low in the analyzed groups — dyspnea (MS — 96.0%, HFDP — 78.4%, OP — 74.6%), ankle edema (MS — 79.8%, HFDP — 50.6%, OP — 32.2%), body weight gain (MS — 14.1%, HFDP — 17.2%, OP — 4.5%). By multivariate model medical education (β 3.372, 95% CI 2.738–4.005) and own illness or having relatives or friends with HF (β 0.654, 95% CI 0.066–1.242) independently aff ected the score of awareness questionnaire. C on c l u s i o n s: The basic knowledge on HF in Poland is not sufficient. It is moderately better among MS. Further campaigns improving HF awareness are necessary.
Go to article

Abstract

This article presents a case study of a large wedge failure. It took place during excavation of the last bench of storage cavern with an approximate dimension of 80 m long having a depth of 8 m. The adopted intervention followed a structured approach, which included immediate rock support, geotechnical and geological investigations in the failure zone and design modifications. Back analyses of the failure zone were also carried out to assess design parameters with observed geological conditions. Re assessment in the failure zone was carried out using modified design parameters, which included shorter benches, rock support installation schemes such as longer rock bolts, reinforced ribs of shotcrete and reduced construction advances. Geotechnical monitoring in and around failure zone were carried out for recording any alarming movements in the rock mass. Initially, geotechnical monitoring was carried out in the recently excavated zone of the cavern on a daily basis. Based on continuous monitoring data for at least one week, the frequency of subsequent monitoring can be decided. In most cases the deformation of rock mass was considerably less than the alarming values which were calculated based on detailed design for different rock classes. The paper discusses the failure, investigation, cause, assessment and remedial measures to complete the construction of cavern.
Go to article

Abstract

Polish energy security is currently one of the key elements affecting the national security system. Maintaining operational efficiency and the permanent modernization of both, power plants, as well as transformer stations and transmission networks is a starting point of ensuring energy security in our country. This is a significant challenge, taking into account the age of the energy critical infrastructure elements in Poland, as well as the permanent increase of the demand for electricity. This implies a systematic growth of the importance of the issue the country’s energy security. The numerous events and anomalies that accompany our everyday life, such as the storms that passed over Poland on the night of August 11–12, 2017, indicate the considerable sensitivity of the critical energy infrastructure on the impact of various negative factors. The security of Polish critical infrastructure connected with the distribution of electricity is particularly at risk. Therefore, it is desirable not only for current repairs and the modernization of the power system elements, but also for the work related to adapting the infrastructure to current and even forecasted needs, challenges and threats. In the face of the presented research results, the reconstruction of the Polish power system, as well as the implementation of innovative solutions in the production, transmission and distribution of energy seems to be unavoidable. Therefore interdisciplinary research and analyses are recommended, allowing the level security of the critical infrastructure to be increased through the best possible diagnosis of factors that may even slightly threaten this security.
Go to article

Abstract

Numerical analysis of the tensioning cables anchorage zone of a bridge superstructure is presented in this paper. It aims to identify why severe concrete cracking occurs during the tensioning process in the vicinity of anchor heads. In order to simulate the tensioning, among others, a so-called local numerical model of a section of the bridge superstructure was created in the Abaqus Finite Element Method (FEM) environment. The model contains all the important elements of the analyzed section of the concrete bridge superstructure, namely concrete, reinforcement and the anchoring system. FEM analyses are performed with the inclusion of both material and geometric nonlinearities. Concrete Damage Plasticity (CDP) constitutive relation from Abaqus is used to describe nonlinear concrete behaviour, which enables analysis of concrete damage and crack propagation. These numerical FEM results are then compared with actual crack patterns, which have been spotted and inventoried at the bridge construction site.
Go to article

Abstract

The paper presents a phenomenon of directional change in the case of a LQR controller applied to multivariable plants with amplitude and rate constraints imposed on the control vector, as well as the impact of the latter on control performance, with the indirect observation of the windup phenomenon effect via frequency of consecutive resat- urations. The interplay of directional change of the computed control vector with control performance has been thoroughly investigated, and it is a result of the presence of con- straints imposed on the applied control vector for different ratios of the number of control inputs to plant outputs. The impact of the directional change phenomenon on the control performance (and also on the windup phenomenon) has been defined, stating that performance deterioration is not tightly coupled with preservation of direction of the computed control vector. This conjecture has been supported by numerous simulation results for different types of plants with different LQR controller parameters.
Go to article

Abstract

Congestive heart failure (CHF) is the fi nal stage in several heart diseases. The diagnosis of CHF in older patients is a challenge. Preserved left ventricular systolic function is a characteristic type of CHF in seniors. The purpose of the study was to characterize elderly patients with CHF and to highlight specific features of the conditions in seniors. The most common etiology of HF in this group of patients is hypertension and coronary heart disease. In seniors atypical presentations of chronic heart failure is much more common than in younger patients. Malnutrition, limitations of exercise and sedentary lifestyles or comorbid diseases have an influence on asymptomatic, early stage of HF. Th ere are better outcomes of treatment in obese individuals. It is called the obesity paradox. Open communication with a patient and his/her family may improve their response to therapy. When heart failure becomes an incurable disease and aggressive treatment is ineffective, palliative care should be considered in end-of-life heart failure patients. The goal of treatment in the remaining moments of life last moments of life should be maximizing the patient’s comfort.
Go to article

Abstract

Myxomatous mitral valve disease (MMVD) is a cardiac condition commonly found in older dogs. The disease process can lead to heart failure (HF). In HF, an increase of reactive oxygen species (ROS) and abnormal mitochondrial activity, as well as apoptosis, have been reported. Humanin (HN) is a polypeptide that has a cardioprotective effect against apoptosis and oxidative stress. The purposes of this study were (1) to investigate the potential role of plasma HN as a cardiac biomarker to predict disease progression of MMVD, and (2) to compare plasma HN concentrations with plasma NT-pro BNP concentrations. Thirty-one dogs were included in the study. The dogs were separated into four groups: Group 1 was healthy dogs (n = 8), Group 2 was MMVD class B (n = 8), Group 3 was MMVD class C (n = 8), and Group 4 was MMVD class D (n = 7). All dogs were given a physical examination, thoracic radiography, echocardiography, and samples of their blood were collected for hematology and blood chemistry analysis. Levels of plasma HN and plasma NT-proBNP were also investigated. The results showed that plasma HN levels were lower in the dogs with MMVD and that lower plasma HN levels were associated with greater severity of MMVD-induced HF. It was possible to observe changes in plasma HN levels at a less severe disease stage than plasma NT-proBNP in dogs with MMVD. These findings sug- gest that a decreased plasma HN level can be used as a biomarker to identify dogs with MMVD -induced HF.
Go to article

Abstract

The single-phase voltage loss is a common fault. Once the voltage-loss failure occurs, the amount of electrical energy will not be measured, but it is to be calculated so as to protect the interest of the power supplier. Two automatic calculation methods, the power substitution and the voltage substitution, are introduced in this paper. Considering the lack of quantitative analysis of the calculation error of the voltage substitution method, the grid traversal method and MATLAB tool are applied to solve the problem. The theoretical analysis indicates that the calculation error is closely related to the voltage unbalance factor and the power factor, and the maximum calculation error is about 6% when the power system operates normally. To verify the theoretical analysis, two three-phase electrical energy metering devices have been developed, and verification tests have been carried out in both the lab and field conditions. The lab testing results are consistent with the theoretical ones, and the field testing results show that the calculation errors are generally below 0.2%, that is correct in most cases.
Go to article

Abstract

In the extra-thick coal seams and multi-layered hard roofs, the longwall hydraulic support yielding, coal face spalling, strong deformations of goaf-side entry, and severe ground pressure dynamic events typically occur at the longwall top coal caving longwall faces. Based on the Key strata theory an overburden caving model is proposed here to predict the multilayered hard strata behaviour. The proposed model together with the measured stress changes in coal seam and underground observations in Tongxin coal mine provides a new idea to analyse stress changes in coal and help to minimise rock bursts in the multi-layered hard rock ground. Using the proposed primary Key and the sub-Key strata units the model predicts the formation and instability of the overlying strata that leads to abrupt dynamic changes to the surrounding rock stress. The data obtained from the vertical stress monitoring in the 38 m wide coal pillar located adjacent to the longwall face indicates that the Key strata layers have a significant influence on ground behaviour. Sudden dynamically driven unloading of strata was caused by the first caving of the sub-Key strata while reloading of the vertical stress occurred when the goaf overhang of the sub-Key strata failed. Based on this findings several measures were recommended to minimise the undesirable dynamic occurrences including pre-split of the hard Key strata by blasting and using the energy consumption yielding reinforcement to support the damage prone gate road areas. Use of the numerical modelling simulations was suggested to improve the key theory accuracy.
Go to article

Abstract

Dynamic Mine disasters can be induced by the instability and failure of a composite structure of rock and coal layers during coal mining. Coal seam contains many native defects, severely affecting the instability and failure of the compound structure. In this study, the effects of coal persistent joint on the strength and failure characteristics of coal-rock composite samples were evaluated using PFC2D software. The results show that with the increase of included angle α between the loading direction and joint plane direction, the uniaxial compressive stress (UCS) and peak strain of composite samples first decrease and then gradually increase. The elastic moduli of composite samples do not change obviously with α. The peak strain at α of 45° is the lowest, and the UCS at α of 30° is the smallest. This is inconsistent with theoretical analysis of lowest UCS at α of 45°. This is because that the local stress concentration caused by the motion inconformity of composite samples may increase the average axial stress of upper wall in PFC2D software. Moreover, the coal persistent joint promotes the transformation from the unstable crack expansion to the macro-instability of composite samples, especially at α of 30° and 45°. The majority of failures for composite samples occur within the coal, and no obvious damage is observed in rock. Their failure modes are shear failure crossing or along the coal persistent joint. The failure of composite sample at α of 30° is a mixed failure, including the shear failure along the persistent joint in coal and tensile failure of rock induced by the propagation of coal persistent joint.
Go to article

Abstract

The protection of Polish architectural heritage in the former eastern borderlands, accomplished through the conservation and technical securing of historical structures, constitutes one of the main programmes that are implemented by the Ministry of Culture and National Heritage. Currently, many Polish historical buildings in the former eastern borderlands are in a very bad technical condition. The load-bearing systems of these elements, as well as elements of their finish, require immediate emergency securing work. The basic steps that precede conservation work are emergency structural works, which guarantee the durability and stability of the entire historical substance. The specifics and complexity of the problem of the failure of historical buildings often demands an in-depth analysis of a series of factors that are difficult to measure and which are responsible for the cause and effect relationship during the early stage of the technical evaluation of a structure. The analyses of failures of numerous historical structures, for instance that were carried out by the authors, have become the inspiration for the search for effective methods of analysis that would allow for an in-depth analysis of the causes and effects of the failures in question. The DEMATEL method (Decision Making Trial and Evaluation Laboratory) that has been presented in this work, and its fuzzy extension, has lately become one of the more popular methods used in the cause-and-effect analysis of various phenomena. The authors demonstrated how this method works on the example of the evaluation and securing of the load-bearing system of the XVII Collegiate church of the Holy Trinity in the town of Olykha in the Volhynskiy Oblast, Ukraine.
Go to article

Abstract

The aim of this study was to assess the innovation risk for an additive manufacturing process. The analysis was based on the results of static tensile tests obtained for specimens made of photocured resin. The assessment involved analyzing the measurement uncertainty by applying the FMEA method. The structure of the causes and effects of the discrepancies was illustrated using the Ishikawa diagram. The risk priority numbers were calculated. The uncertainty of the tensile test measurement was determined for three printing orientations. The results suggest that the material used to fabricate the tensile specimens shows clear anisotropy of the properties in relation to the printing direction.
Go to article

Abstract

To reliably calibrate suitable partial safety factors, useful for the specification of global condition describing structural safety level in considered design case, usually the evaluation of adequate failure probability is necessary. In accidental fire situation, not only probability of the collapse of load-bearing structure, but also another probability related to the people staying in a building at the moment of fire occurence should be assessed. Those values are different one from another in qualitative sense but they are coupled because they are determined by similar factors. The first one is the conditional probability with the condition that fire has already occured, whereas the second is the probability of failure in case of a potential fire, which can take place in the examined building compartment, but its ignition has not yet appeared. An engineering approach to estimate such both probabilities is presented and widely discussed in the article.
Go to article

Abstract

The effects of the miniature channel-shaped scratches not detectable by the present inline electromagnetic defect detection system employed for wires’ surface defect detection on the fracture behaviour of the wires for civil engineering applications were investigated numerically. Finite element analysis revealed that both miniature channel-shaped across-the-thickness and across-the-width scratches change the fracture behaviour of the wires in terms of the fracture initiation locations and fracture process sequence. However, miniature across-the-thickness scratches does not affect the fracture shape of the wire while miniature across-the-width scratches changed the wires’ cup and cone fracture to a fracture shape with a predominantly flat fracture. These results provide an understanding of the fracture behaviour of wires with miniature scratches and serve as an alternative or a complimentary tools to experimental or fractographic failure analysis of wires with miniatures scratches which are difficult to carry out in the laboratory due to the sizes of the scratches.
Go to article

Abstract

Despite the consensus on the role of lung and pleura ultrasound in human medicine, veteri- nary medicine questions credibility of the pulmonary evaluation in ultrasound examination, based on the analysis of artifacts in animals with clinical signs of respiratory failure and possibility of pulmonary edema diagnosis with recognition of the degree of its severity. The study was conduct- ed on 47 animals (29 dogs and 18 cats) of different breeds, age and sex. In all of animals prior to the transthoracic lung and pleura ultrasound examination (TLPUS), all animals were subjected to a clinical examination and hematological blood test as well as chest radiography examination in three projections. Ultrasound imaging of the chest in each animal was performed at designated four defined segments. TLPUS in dogs and cats based on an analysis of artifacts allows recogni- tion of pulmonary edema, to the degree comparable to chest X-ray examination. The number of depicted B-lines artifacts is proportional to the degree of pulmonary edema. These results allow to reduce the number of radiographs and allow the shortening of the diagnostic process for pa- tients in life-threatening condition.
Go to article

Abstract

Effects of charge composition on microstructure, mechanical and fatigue properties of nodular cast irons have been studied. For experiments, five melts of nodular cast iron were used – three types of unalloyed nodular cast irons (with different ratio of steel and pig iron in a charge and different additives for regulation of the chemical composition) and two types of alloyed nodular cast irons (SiMo- and SiCu- nodular cast iron). The microstructure of the specimens was evaluated according to a norm and by automatic image analysis. The mechanical properties were investigated by the tensile test, impact bending test and Brinell hardness test. The fatigue tests were carried out at sinusoidal cyclic push-pull loading at ambient temperature. The best mechanical properties were reached in the nodular cast iron alloyed by Si and Cu, what is related to its microstructure.
Go to article

Abstract

This article investigates and evaluates a handover exchange scheme between two secondary users (SUs) moving in different directions across the handover region of neighboring cell in a cognitive radio network. More specifically, this investigation compares the performance of SUs in a cellular cognitive radio network with and without channel exchange scheme. The investigation shows reduced handover failure, blocking, forced and access probabilities respectively, for handover exchange scheme with buffer as compared to exchange scheme without buffer. It also shows transaction within two cognitive nodes within a network region. The system setup is evaluated through system simulation.
Go to article

Abstract

The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle) cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power) system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser) and the heat supply pump in failure conditions.
Go to article

Abstract

The paper deals with the problem of the determination of the effects of temperature on the efficiency of the nitrification process of industrial wastewater, as well as its toxicity to the test organisms. The study on nitrification efficiency was performed using wastewater from one of Polish chemical factories. The chemical factory produces nitrogen fertilizers and various chemicals. The investigated wastewater was taken from the influent to the industrial mechanical-biological wastewater treatment plant (WWTP). The WWTP guaranteed high removal efficiency of organic compounds defined as chemical oxygen demand (COD) but periodical failure of nitrification performance was noted in last years of the WWTP operation. The research aim was to establish the cause of recurring failures of nitrification process in the above mentioned WWTP. The tested wastewater was not acutely toxic to activated sludge microorganisms. However, the wastewater was genotoxic to activated sludge microorganisms and the genotoxicity was greater in winter than in spring time. Analysis of almost 3 years’ period of the WWTP operation data and laboratory batch tests showed that activated sludge from the WWTP under study is very sensitive to temperature changes and the nitrification efficiency collapses rapidly under 16°C. Additionally, it was calculated that in order to provide the stable nitrification, in winter period the sludge age (SRT) in the WWTP should be higher than 35 days.
Go to article

Abstract

B a c k g r o u n d: A novel paradigm of diastolic heart failure with preserved ejection fraction (HFpEF) proposed the induction of coronary microvascular dysfunction by HFpEF comorbidities via a systemic pro-infl ammatory state and associated oxidative stress. Th e consequent nitric oxide deficiency would increase diastolic tension and favor fi brosis of adjacent myocardium, which implies not only left ventricular (LV), but all-chamber myocardial stiff ening. Our aim was to assess relations between low-grade chronic systemic infl ammation and left atrial (LA) pressure-volume relations in real-world HFpEF patients. Me t h o d s: We retrospectively analyzed medical records of 60 clinically stable HpEFF patients in sinus rhythm with assayed high-sensitive C-reactive protein (CRP) during the index hospitalization. Subjects with CRP >10 mg/L or coexistent diseases, including coronary artery disease, were excluded. LV and LA diameters and mitral E/E’ ratio (an index of LA pressure) were extracted from routine echocardiographic 46 Cyrus M. Sani, Elahn P.L. Pogue, et al. records. A surrogate measure of LA stiff ness was computed as the averaged mitral E/e’ ratio divided by LA diameter. R e s u l t s: With ascending CRP tertiles, we observed trends for elevated mitral E/e’ ratio (p <0.001), increased relative LV wall thickness (p = 0.01) and higher NYHA functional class (p = 0.02). Th e LA stiffness estimate and log-transformed CRP levels (log-CRP) were interrelated (r = 0.38, p = 0.003). On multivariate analysis, the LA stiff ness index was independently associated with log-CRP (β ± SEM: 0.21 ± 0.07, p = 0.007) and age (β ± SEM: 0.16 ± 0.07, p = 0.03), which was maintained upon adjustment for LV mass index and relative LV wall thickness. C o n c l u s i o n s: Low-grade chronic infl ammation may contribute to LA stiff ening additively to age and regardless of the magnitude of associated LV hypertrophy and concentricity. LA stiff ening can exacerbate symptoms of congestion in HFpEF jointly with LV remodeling.
Go to article

Abstract

T h e a i m: The aim of the study is to present the initial experience with continuous flow left ventricle assist device (CF-LVAD) in pediatric patients with BSA below 1.5 m2. M a t e ri a l a n d M e t h o d s: Between 2016 and 2017, CF-LVAD (the Heartware System) have been implanted in three pediatric patients in the Department of Pediatric Cardiac Surgery, Jagiellonian University, Krakow, Poland. The indications for initiating CF-LVAD were end-stage congestive heart failure due to dilated cardiomyopathy in all children. R e s u l t s: Implanted patients have had BSA of 1.09, 1.42, 1.2 m2, and 37, 34, 34 kg of body weight and the age 12, 11, 12 years, respectively. The time of support was 550 days in two patients and 127 in another one, and is ongoing. The main complication has been driveline infection. C o n c l u s i o n: The outcomes from our single-center experience using the HeartWare CF-LVAD have been excellent with a low incidence of complication and no necessity to reoperation in our patients. Children could be successfully and safely discharged home.
Go to article

Abstract

The FMEA (Failure Mode and Effects Analysis) method consists in analysis of failure modes and evaluation of their effects based on determination of cause-effect relationships for formation of possible product or process defects. Identified irregularities which occur during the production process of piston castings for internal combustion engines were ordered according to their failure rates, and using Pareto-Lorenz analysis, their per cent and cumulated shares were determined. The assessments of risk of defects occurrence and their causes were carried out in ten-point scale of integers, while taking three following criteria into account: significance of effects of the defect occurrence (LPZ), defect occurrence probability (LPW) and detectability of the defect found (LPO). A product of these quantities constituted the risk score index connected with a failure occurrence (a so-called “priority number,” LPR). Based on the observations of the piston casting process and on the knowledge of production supervisors, a set of corrective actions was developed and the FMEA was carried out again. It was shown that the proposed improvements reduce the risk of occurrence of process failures significantly, translating into a decrease in defects and irregularities during the production of piston castings for internal combustion engines.
Go to article

This page uses 'cookies'. Learn more