Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 94
items per page: 25 50 75
Sort by:

Abstract

Knowledge of the temperature distribution in subsurface layers of the ground is important in the design, modelling and exploitation of ground heat exchangers. In this work a mathematical model of heat transfer in the ground is presented. The model is based on the solution of the equation of transient heat transfer in a semi-infinite medium. In the boundary condition on the surface of the ground radiation fluxes (short- and long-wave), convective heat flux and evaporative heat flux are taken into account. Based on the developed model, calculations were carried out to determine the impact of climatic conditions and the physical properties of the ground on the parameters of the Carslaw-Jeager equation. Example results of calculated yearly courses of the daily average temperature of the surface of the ground and the amount of particular heat fluxes on the ground surface are presented. The compatibility of ground temperature measurements at different depths with the results obtained from the Carslaw–Jaeger equation is evaluated. It was found that the temperature distribution in the ground and its variability in time can be calculated with good accuracy.
Go to article

Abstract

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.
Go to article

Abstract

CFD modelling of momentum and heat transfer using the Large Eddy Simulation (LES) approach has been presented for a Kenics static mixer. The simulations were performed with the commercial code ANSYS Fluent 15 for turbulent flow of three values of Reynolds number, Re = 5 000, 10 000 and 18 000. The numerical modelling began in the RANS model, where standard k−ε turbulence model and wall functions were used. Then the LES iterations started from the initial velocity and temperature fields obtained in RANS. In LES, the Smagorinsky–Lilly model was used for the sub-grid scale fluctuations along with wall functions for prediction of flow and heat transfer in the near-wall region. The performed numerical study in a Kenics static mixer resulted in highly fluctuating fields of both velocity and temperature. Simulation results were presented and analysed in the form of velocity and temperature contours. In addition, the surface-averaged heat transfer coefficient values for the whole insert length were computed and compared with the literature experimental data. Good compliance of the LES simulation results with the experimental correlation was obtained.
Go to article

Abstract

The authors present a numerical study of a start-up of a boiler with a thick-walled element subjected to thermomechanical loading. The significance of calculations of real heat transfer coefficients has been demonstrated. Fluid dynamics, mechanical transient thermal and static structural calculations have been conducted in both separate and coupled modes. Strain-stress analyses prove that the effect of the heat transfer coefficient changing in time and place in comparison with a constant one as recommended by standards is the key factor of fatigue calculations.
Go to article

Abstract

Anti-condensation coatings are widely used in refrigeration, air conditioning and ships technology. They can store a certain amount of water in its own volume, and then return it back in favorable conditions. Anti-condensation coatings are used also to protect structures from the moisture. This paper presents the results of experimental research on heat and mass transfer in an anti-condensation coating under natural and forced convection. Experimental results are obtained for horizontal and inclined plates. Experimental data are compared with different models of computation.
Go to article

Abstract

Plate fin-tube heat exchangers fins are bonded with tubes by means of brazing or by mechanical expansion of tubes. Various errors made in the process of expansion can result in formation of an air gap between tube and fin. A number of numerical simulations was carried out for symmetric section of plate fin-tube heat exchanger to study the influence of air gap on heat transfer in forced convection conditions. Different locations of air gap spanning 1/2 circumference of the tube were considered, relatively to air flow direction. Inlet velocities were a variable parameter in the simulations (1– 5 m/s). Velocity and temperature fields for cases with air gap were compared with cases without it (ideal thermal contact). For the case of gap in the back of the tube (in recirculation zone) the lowest reduction (relatively to the case without gap) of heat transfer rate was obtained (average of 11%). The worst performance was obtained for the gap in the front (reduction relatively to full thermal contact in the average of 16%).
Go to article

Abstract

A simplified isoperibol calorimetry method for measuring specific heat in solids is described. Taking advantage of the classical Nernst dependency the specific heat is calculated from time-domain temperature curves registered for a sample forced heating and natural cooling phase. In order to improve accuracy of the measurements a correction factor, taking into account the heat transferred to the surrounding, is introduced along with a procedure of statistical elimination of unavoidable measurement deviations. The method is implemented in a simple and straightforward measuring system involving no vacuum calorimeter. The method is applicable for quick and routine specific heat measurements performed on small solid dielectric or metallic specimens at near-room temperature. Test results of various materials used commonly in electrical engineering are demonstrated and discussed as well as comparison to drop calorimetry and differential scanning calorimetry reference measurements is included. The overall repeatability of the test method and the simplified apparatus is estimated as not worse than 2.6%.
Go to article

Abstract

The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.
Go to article

Abstract

Development of electronics, which aims to improve the functionality of electronic devices, aims at increasing the packing of transistors in a chip and boosting clock speed (the number of elementary operations per second). While pursuing this objective, one encounters the growing problem of thermal nature. Each switching of the logic state at the elementary level of an integrated circuit is associated with the generation of heat. Due to a large number of transistors and high clock speeds, higher heat flux is emitted by the microprocessor to a level where the component needs to be intensively cooled, or otherwise it will become overheated. This paper presents the cooling of microelectronic components using microjets.
Go to article

Abstract

This paper presents results of investigations on the application of CuO-water nanofluids for intensification of convective heat transfer. Performance of nanofluids with 2.2 and 4.0 vol.% CuO NPs (nanoparticles) content were examined with regard to heat transfer coefficient and pressure losses in case of turbulent flow in a tube. Negligible impact of examined nanofluid on heat transfer improvement was found. Moreover, measured pressure losses significantly exceeded those determined for primary base liquid. The observations showed that application of nanofluid for heat transfer intensification with a relatively high solid load in the examined flow range is rather controversial.
Go to article

Abstract

Flow boiling and flow condensation are often regarded as two opposite or symmetrical phenomena. Their description however with a single correlation has yet to be suggested. In the case of flow boiling in minichannels there is mostly encountered the annular flow structure, where the bubble generation is not present. Similar picture holds for the case of inside tube condensation, where annular flow structure predominates. In such case the heat transfer coefficient is primarily dependent on the convective mechanism. In the paper a method developed earlier by the first author is applied to calculations of heat transfer coefficient for inside tube condensation. The method has been verified using experimental data from literature on several fluids in different microchannels and compared to three well established correlations for calculations of heat transfer coefficient in flow condensation. It clearly stems from the results presented here that the flow condensation can be modeled in terms of appropriately devised pressure drop.
Go to article

Abstract

In the paper, the results of numerical simulations of the steam flow in a shell and tube heat exchanger are presented. The efficiency of different models of turbulence was tested. In numerical calculations the following turbulence models were used: k-ε, RNG k-ε, Wilcox k-ω, Chen-Kim k-ε, and Lam-Bremhorst k-ε. Numerical analysis of the steam flow was carried out assuming that the flow at the inlet section of the heat exchanger were divided into three parts. The angle of steam flow at inlet section was determined individually in order to obtain the best configuration of entry vanes and hence improve the heat exchanger construction. Results of numerical studies were verified experimentally for a real heat exchanger. The modification of the inlet flow direction according to theoretical considerations causes the increase of thermal power of a heat exchanger of about 14%.
Go to article

Abstract

The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow nside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.
Go to article

Abstract

The paper describes experimental research on a resistojet type rocket thruster which was built as an actuator in the Attitude Control System of a model space robotic platform. A key element of the thruster is the heater responsible for increasing the temperature of the working medium in the thruster chamber and hence the specific impulse. This parameter describes the performance of the thruster, increases providing – for lower propellant consumption – the same propulsion effect (thrust). A high performance thruster means either total launch mass can be reduced or satellite lifetime increased, which are key commercial factors. During the first phase of the project, 7 different heating chamber designs were examined. The heater is made of resistive wire with resistivity of 9Ω/m. Power is delivered by a dedicated supply system based on supercapacitors with output voltage regulated in the range of 20–70 V. The experimental phase was followed by designing the chamber geometry and the heating element able to deliver both: maximum increase of gas temperature and minimum construction dimensions. Experiments with the optimal design show an increase in temperature of the working gas (air) by about 300 ◦C giving a 40% increase in specific impulse. The final effect of that is a 40% reduction in mass flow rate while retaining thrust at a nominal level of 1 N.
Go to article

Abstract

This work discusses the heat transfer aspects of the neonate’s brain cooling process carried out by the the device to treat hypoxic-ischemic encephalopathy. This kind of hypothermic therapy is undertaken in case of improper blood circulation during delivery which causes insufficient transport of oxygen to the brain and insufficient cooling of the brain by circulating blood. The experimental setup discussed in this manuscript consists of a special water flow meter and two temperature sensors allowing to measure inlet and outlet water temperatures. Collected results of the measurements allowed to determine time histories of the heat transfer rate transferred from brain to the cooling water for three patients. These results are then analysed and compared among themselves.
Go to article

Abstract

Falling film, shell-tube type evaporators are commonly used heat exchangers for the production of fruit juice concentrate. The main problem in the design of the exchanger is a reliable estimation of wall heat transfer coefficients for all effects in real operating conditions. Most literature sources for the overall heat transfer coefficients are based on laboratory measurements, where the tubes are usually short, no fouling exists and the flow rate is carefully adjusted. This paper shows the heat transfer estimated in real industrial operating conditions, compared to literature sources. Paper is based on the author’s own experience in designing and launching several evaporators for juice concentrate production into operation. As a summary, the design heat transfer coefficients are provided with relation to sugar content in juice concentrate.
Go to article

Abstract

It is shown that heat energy transfer from the source to the medium is accompanied by rheological transitions. Physical parameters of the medium change in the rheological transition zone due to heat energy flow transfer at a certain speed. It is shown that use of linear gradient laws during description of heat energy transfer processes leads to great differences between theoretical and experimental results, as well as the paradox of infinite spreading speed of disturbances of temperature fields. For mathematical description of heat energy transfer processes in mediums, it is proposed to use the method of irreversible rheological transitions and zero gradient, thus providing solutions of nonlinear differential equations in analytical form.
Go to article

Abstract

The paper analyzes the phenomenon of heat transfer and its inertia in solids. The influence of this effect on the operation of an integrated circuit is described. The phenomenon is explained using thermal analogy implemented in the Spice environment by an R-C thermal model. Results from the model are verified by some measurements with a chip designed in CMOS 0.7 μm (5 V) technology. The microcontroller-based measurement system structure and experiment results are described.
Go to article

Abstract

The paper deals with the impact of technological parameters on the heat transfer coefficient and microstructure in AlSi12 alloy using squeeze casting technology. The casting with crystallization under pressure was used, specifically direct squeeze casting method. The goal was to affect crystallization by pressure with a value 100 and 150 MPa. The pressure applied to the melt causes a significant increase of the coefficient of heat transfer between the melt and the mold. There is an increase in heat flow by approximately 50% and the heat transfer coefficient of up to 100-fold, depending on the casting conditions. The change in cooling rate influences the morphology of the silicon particles and intermetallic phases. A change of excluded needles to a rod-shaped geometry with significantly shorter length occurs when used gravity casting method. By using the pressure of 150 MPa during the crystallization process, in the structure can be observed an irregular silica particles, but the size does not exceed 25 microns.
Go to article

Abstract

The analysis of effectiveness of the gradient algorithm for the two-dimension steady state heat transfer problems is being performed. The three gradient algorithms - the BCG (biconjugate gradient algorithm), the BICGSTAB (biconjugate gradient stabilized algorithm), and the CGS (conjugate gradient squared algorithm) are implemented in a computer code. Because the first type boundary conditions are imposed, it is possible to compare the results with the analytical solution. Computations are carried out for different numerical grid densities. Therefore it is possible to investigate how the grid density influences the efficiency of the gradient algorithms. The total computational time, residual drop and the iteration time for the gradient algorithms are additionally compared with the performance of the SOR (successive over-relaxation) method.
Go to article

Abstract

Secure and cost-effective power generation has become very important nowdays. Care must be taken while designing and operating modern steam power plants. There are regulations such as German boiler regulations (Technische Regeln für Dampfkessel 301) or European Standards that guide the user how to operate the steam power plants. However, those regulations are based on the quasi-steady state assumption and one dimensional temperature distribution in the entire element. This simplifications may not guarantee that the heating and cooling operations are conducted in the most efficient way. Thus, it was important to find an improved method that can allow to establish optimum parameters for heating and cooling operations. The optimum parameters should guarantee that the maximum total stresses in the construction element are in the allowable limits and the entire process is conducted in the shortest time. This paper summarizes mathematical descriptions how to optimize shut down process of power block devices. The optimization formulation is based on the assumption that the maximum total stresses in the whole construction element should be kept within allowable limits during cooling operation. Additionally, the operation should be processed in the shortest time possible.
Go to article

Abstract

This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2nanoparticles, the second one contained Al2O3nanoparticles, and the third one the Cu nanoparticles.
Go to article

Abstract

Construction elements of supercritical power plants are subjected to high working pressures and high temperatures while operating. Under these conditions high stresses in the construction are created. In order to operate safely, it is important to monitor stresses, especially during start-up and shut-down processes. The maximum stresses in the construction elements should not exceed the allowable stress limit. The goal is to find optimum operating parameters that can assure safe heating and cooling processes [1-5]. The optimum parameters should guarantee that the allowable stresses are not exceeded and the entire process is conducted in the shortest time. In this work new numerical method for determining optimum working parameters is presented. Based on these parameters heating operations were conducted. Stresses were monitored during the entire processes. The results obtained were compared with the German boiler regulations - Technische Regeln für Dampfkessel 301.
Go to article

Abstract

Experimental investigation of natural convection heat transfer in heated vertical tubes dissipating heat from the internal surface is presented. The test section is electrically heated and constant wall heat flux is maintained both circumferentially and axially. Four different test sections are taken having 45 mm internal diameter and 3.8 mm thickness. The length of the test sections are 450 mm, 550 mm, 700 mm and 850 mm. Ratios of length to diameter of the test sections are taken as 10, 12.22, 15.56, and 18.89. Wall heat fluxes are maintained at 250–3341 W/m2. Experiments are also conducted on channels with internal rings of rectangular section placed at various distances. Thickness of the rings are taken as 4 mm, 6 mm, and 8 mm. The step size of the rings varies from 75 mm to 283.3 mm. The nondimensional ring spacing, expressed as the ratios of step size to diameter, are taken from 1.67 to 6.29 and the non-dimensional ring thickness, expressed as the ratios of ring thickness to diameter are taken from 0.089 to 0.178. The ratios of ring spacing to its thickness are taken as 9.375 to 70.82. The effects of various parameters such as length to diameter ratio, wall heat flux, ring thickness and ring spacing on local steady-state heat transfer behavior are observed. From the experimental data a correlation is developed for average Nusselt number and modified Rayleigh number. Another correlation is also developed for modified Rayleigh number and modified Reynolds number. These correlations can predict the data accurately within ±10% error.
Go to article

Abstract

The theoretical basis for the indirect measurement approach of mean heat transfer coefficient for the packed bed based on the modified single blow technique was presented and discussed in the paper. The methodology of this measurement approach dedicated to the matrix of the rotating regenerative gas heater was discussed in detail. The testing stand consisted of a dedicated experimental tunnel with auxiliary equipment and a measurement system are presented. Selected experimental results are presented and discussed for selected types of matrices of regenerative air preheaters for the wide range of Reynolds number of gas. The agreement between the theoretically predicted and measured temperature profiles was demonstrated. The exemplary dimensionless relationships between Colburn heat transfer factor, Darcy flow resistance factor and Reynolds number were presented for the investigated matrices of the regenerative gas heater.
Go to article

This page uses 'cookies'. Learn more