Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

In the present work, studies have been carried out on the variations in the microstructure and hardness of P91 base-metal and welded joint. This variations result from the grit blasting and thermal cycle experienced during the thermal spraying process. The microstructural effects have been analyzed in terms of the depth of the deformation zone. Scanning Electron Microscopy and Xray diffraction were used as characterization techniques. The grit blasting carried out prior to thermal spraying has resulted in the highest change in sub-surface hardness of the heat affected zone (HAZ). However, flame treatment further reduced the subsurface hardness of the heat affected zone. The depth of deformation zone was highest for inter-critical heat affected zone (IC-HAZ). The overall coating process resulted in an increase in subsurface hardness of various regions of HAZ and fusion zone (FZ). The base metal showed a 7% increase in subsurface hardness due to the overall coating process. The IC-HAZ showed maximum variation with 36% increase in subsurface hardness. The coarse grained heat affected zone (CG-HAZ) and FZ did not show any change in subsurface hardness. As a whole, the hardness and microstructure of the welded joint was observed to be more sensitive to the thermal spray coating process as compared to the base metal.
Go to article

Abstract

The welding of nuclear grade P91 and P92 steel plate of thickness 5.2 mm were performed using the autogenous tungsten inert gas (TIG) welding process. The welded joint of P91 and P92 steel plate were subjected to the varying post weld heat-treatment (PWHT) including the post weld heat treatment (PWHT) and re-austenitizing based tempering (PWNT). A comparative study was performed related to the microstructure evolution in fusion zone (FZ) of both the welded joint using the scanning electron microscope and optical microscope in a different condition of heat treatment. The hardness test of the FZ for both joints was also conducted in a different condition of heat treatment. P92 steel welded joint have observed the higher tendency of the δ ferrite formation that led to the great variation in hardness of the P92 FZ. The homogeneous microstructure (absence of δ ferrite) and acceptable hardness was observed after the PWNT treatment for both the welded joint.
Go to article

Abstract

In order to improve the efficiency of power generation system and reduce CO2 emissions power plants work at high temperature and pressure. Under such conditions modified steel 9Cr, which fulfils the requirements concerning creep resistance, is used. However, Cr2O3 formed on the steel does not protect the construction material in the atmosphere which contains CO2 and SO2. The aim of the experiment was to study the behaviour of P91 steel in CO2 atmosphere with the addition of 1% and 5 vol.% of SO2 at different temperatures (700, 800 and 900°C). It was concluded that the corrosion rate of P91 steel is increasing with a rise in temperature. Scales formed in CO2 atmosphere at 900°C contain a mixture of iron oxides in the outer layer and chromium-iron spinel in the inner layer. The FeS and Ni were found in the inner zone of scales formed in SO2 atmosphere.
Go to article

This page uses 'cookies'. Learn more