Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The sodium expansion and creep strain of semi-graphitic cathodes are investigated using a modified Rapoport apparatus. To further understanding of the sodium and bath penetration damage processes, the impact of external stress fluence on the carbon cathode microstructure has been defined with XRD analysis, Raman spectroscopy and scanning electron microscope (SEM). Graphite atoms fracture into smaller fragments that are less directional than the pristine platelets, which allows for a possible filling of the cracks that thus develop by the sodium and bath during aluminum electrolysis. The average microcrystalline size (calculated by Raman spectroscopy) is reduced by the deformation. The decreased intensity and widened ‘G’ and ‘D’ peaks in the analysis indicate the poor order of the sheets along the stacking direction while the consistent layered graphite structure is sustained.
Go to article

Abstract

Raman spectrometers are devices which enable fast and non-contact identification of examined chemicals. These devices utilize the Raman phenomenon to identify unknown and often illicit chemicals (e.g. drugs, explosives) without the necessity of their preparation. Now, Raman devices can be portable and therefore can be more widely used to improve security at public places. Unfortunately, Raman spectra measurements is a challenge due to noise and interferences present outside the laboratories. The design of a portable Raman spectrometer developed at the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology is presented. The paper outlines sources of interferences present in Raman spectra measurements and signal processing techniques required to reduce their influence (e.g. background removal, spectra smoothing). Finally, the selected algorithms for automated chemicals classification are presented. The algorithms compare the measured Raman spectra with a reference spectra library to identify the sample. Detection efficiency of these algorithms is discussed and directions of further research are outlined.
Go to article

Abstract

Hydroxyapatite (HAp) has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporation efficiency the Raman spectroscopy has been chosen. In order to evaluate dispersion and concentration of the silver nanoparticles inside the hydroxyapatite matrix, the optical coherence tomography (OCT) has been used. Five samples were developed and examined ‒ a reference sample of pure HAp sol and four samples of HAp colloids with different silver nanoparticle solution volume ratios. The Raman spectra for each solution have been obtained and analyzed. Furthermore, a transverse-sectional visualization of every sample has been created and examined by means of OCT.
Go to article

Abstract

The technique of electrospinning was employed to fabricate uniform one-dimensional inorganic-organic composite nanofibers at room temperature from a solution containing equal volumes of aluminum 2, 4-pentanedionate in acetone and polyvinylpyrrolidone in ethanol. Upon firing and sintering under carefully pre-selected time-temperature profiles (heating rate, temperature and soak time), high-purity and crystalline alumina nanofibers retaining the original morphological features present in the as-spun composite (cermer) fibers were obtained. Tools such as laser Raman spectroscopy, scanning and transmission electron microscopy together with energy dispersive spectroscopy and selected area electron diffraction were employed to follow the systematic evolution of the ceramic phase and its morphological features in the as-spun and the fired fibers. X-ray diffraction was used to identify the crystalline fate of the final product.
Go to article

Abstract

Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.
Go to article

Abstract

This article presents the results of an examination performed on a set of samples of glass-epoxy core rods used in composite insulators with silicone rubber housings. The goal of the examination was to test the aging resistance of the core material when exposed to Direct Current (DC) high voltage. Long term exposure of a glass-epoxy core rod to DC high voltage may lead to the gradual degradation of its mechanical properties due to the ion migrations. Electrolysis of the core material (glass fiber) may cause electrical breakdown of the insulators and consequently lead to a major failure. After being aged for 6000 hours under DC high voltage, the samples were subjected to microscopic analysis. Their chemical composition was also examined using Raman spectroscopy and their dielectric losses and conductance in the broad range of frequencies were tested using dielectric spectroscopy.
Go to article

This page uses 'cookies'. Learn more