Search results

Filters

  • Journals
  • Date

Search results

Number of results: 10
items per page: 25 50 75
Sort by:

Abstract

Describes how to obtain a soluble sodium silicate with a density of 1.40 g/cm3, 1.45 g/cm3, 1.50 g/cm3, and silica module M = 2.1 obtained from the silica- sodium glass with module M = 3.3 and M = 2.1. Residual (final) strength of molding samples made with these binders, were determined at temperatures corresponding to the characteristic temperatures of phase and temperature transitions of silica gel. Indicated the type of soluble sodium silicate capable of obtain the smallest value of the final strength of molding sand in the specified range of temperatures.
Go to article

Abstract

The paper presents the results of preliminary research on the use of silica sands with hydrated sodium silicate 1.5% wt. of binder for the performance of eco-friendly casting cores in hot-box technology. To evaluate the feasibility of high quality casting cores performed by the use of this method, the tests were made with the use of a semiautomatic core shooter using the following operating parameters: initial shooting pressure of 6 bar, shot time 4 s and 2 s, core-box temperature 200, 250 and 300 °C and core heating time 30, 60, 90 and 150 s. Matrixes of the moulding sands were two types of high-silica sand: fine and medium. Moulding sand binder was a commercial, unmodified hydrated sodium silicate having a molar module SiO2/Na2O of 2.5. In one shot of a core-shooter were made three longitudinal samples (cores) with a total volume of about 2.8 dm3. The samples thus obtained were subjected to an assessment of the effect of shooting parameters, i.e. shooting time, temperature and heating time, using the criteria: core-box fill rate, bending strength (RgU), apparent density and surface quality after hardening. The results of the trials on the use of sodium silicate moluding sands made it possible to further refine the conditions of next research into the improvement of inorganic warm-box/hot-box technology aimed at: reduction of heating temperature and shot time. It was found that the performance of the cores depends on the efficiency of the venting system, shooting time, filling level of a shooting chamber and grains of the silica matrix used.
Go to article

Abstract

In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within 100 to 1200 °C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.
Go to article

Abstract

Moulding sands containing sodium silicate (water-glass) belong to the group of porous mixture with low resistance to increased humidity. Thanks to hydrophilic properties of hardened or even overheated binder, possible is application of effective methods of hydrous reclamation consisting in its secondary hydration. For the same reason (hydrophilia of the binder), moulds and foundry cores made of high-silica moulding sands with sodium silicate are susceptible to the action of components of atmospheric air, including the contained steam. This paper presents results of a research on the effect of (relative) humidity on mechanical and technological properties of microwave-hardened moulding mixtures. Specimens of the moulding sand containing 1.5 wt% of sodium water-glass with module 2.5 were subjected, in a laboratory climatic chamber, to long-term action of steam contained in the chamber atmosphere. Concentration of water in atmospheric air was stabilized for 28 days (672 h) according to the relative humidity parameter that was ca. 40%, 60% and 80% at constant temperature 20 °C. In three cycles of the examinations, the specimens were taken out from the chamber every 7 days (168 h) and their mechanical and technological parameters were determined. It was found on the grounds of laboratory measurements that moulds and cores hardened with microwaves are susceptible to action of atmospheric air and presence of water (as steam) intensifies action of the air components on glassy film of sodium silicate. Microwave-hardened moulding sands containing sodium silicate may be stored on a longterm basis in strictly determined atmospheric conditions only, at reduced humidity. In spite of a negative effect of steam contained in the air, the examined moulding mixtures maintain a part of their mechanical and technological properties, so the moulds and foundry cores stored in specified, controlled conditions could be still used in manufacture.
Go to article

Abstract

In the paper, a research on effects of baking temperature on chromite sand base of moulding sands bonded with sodium silicate is presented. Pure chromite sand and its chromite-based moulding sand prepared with use of sodium silicate were subjected to heating within 100 to 1200 °C. After cooling-down, changes of base grains under thermal action were determined. Chromite moulding sand was prepared with use of 0.5 wt% of domestic made, unmodified sodium silicate (water-glass) grade 145. After baking at elevated temperatures, creation of rough layer was observed on grain surfaces, of both pure chromite sand and that used as base of a moulding sand. Changes of sand grains were evaluated by scanning microscopy and EDS analyses. It was found that changes on grain surfaces are of laminar nature. The observed layer is composed of iron oxide (II) that is one of main structural components of chromite sand. In order to identify changes in internal structure of chromite sand grains, polished sections were prepared of moulding sand hardened with microwaves and baked at elevated temperatures. Microscopic observations revealed changes in grains structure in form of characteristically crystallised acicular particles with limited magnesium content, intersecting at various angles. EDS analysis showed that these particles are composed mostly of chromium oxide (III) and iron oxide (II). The temperature above that the a.m. changes are observed in both chromite-based moulding sand and in pure chromite sand. The observed phenomena were linked with hardness values and mass of this sand.
Go to article

Abstract

In the paper, presented is a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened moulding sands prepared of three kinds of high-silica base and a selected grade of sodium silicate. Measurements of power loss of microwave radiation (Pin) expressed by a total of absorbed power (Pabs), output power (Pout) and reflected power (Pref) were carried-out on a stand of semiautomatic microwave slot line. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological and economical importance for manufacture of high-quality casting moulds and cores of various shapes and sizes. It was found that relative density influences parameters of power output and power reflected from samples of moulding sand placed in a waveguide. Absorption expressed by the parameter Pabs is not related to granularity of high-silica base: fine, medium and coarse. It was found that the semiautomatic microwave slot line supports evaluation of effectiveness of microwave absorption on the grounds of power loss measurements and enables statistic description of influence of relative density of the sandmix on penetration of electromagnetic waves in unhardened moulding sands.
Go to article

Abstract

The necessity of obtaining high quality castings forces both researchers and producers to undertake research in the field of moulding sands. The key is to obtain moulding and core sands which will ensure relevant technological parameters along with high environmental standards. The most important group in this research constitutes of moulding sands with hydrated sodium silicate. The aim of the article is to propose optimized parameters of hardening process of moulding sands with hydrated sodium silicate prepared in warm-box technology. This work focuses on mechanical and thermal deformation of moulding sands with hydrated sodium silicate and inorganic additives prepared in warm-box technology. Tested moulding sands were hardened in the temperature of 140oC for different time periods. Bending strength, thermal deformation and thermal degradation was tested. Chosen parameters were tested immediately after hardening and after 1h of cooling. Conducted research proved that it is possible to eliminate inorganic additives from moulding sands compositions. Moulding sands without additives have good enough strength properties and their economic and ecological character is improved.
Go to article

Abstract

The presented in the paper investigations were aimed at the determination of the reclaimed material (obtained in the dry mechanical reclamation process) addition influence on properties of moulding sands with hydrated sodium silicate modified by colloidal suspension of zinc oxide nanoparticles in propanol. Nanoparticles originated from the thermal decomposition of alkaline zinc carbonate, were used. The results of the reclamation of the spent moulding sand with hydrated sodium silicate performed in the AT-2 testing reclaimer are presented in the paper. Both, spent sands from the Floster S technology and from the technology with the modified water-glass were subjected to the reclamation processes. The following determinations of the reclaimed material were performed: pH reaction, acid demand, ignition loss and Na2O content. The obtained reclaim was used as a matrix component of moulding sands with water-glass in the Floster S technology, in which it constituted 60% and 50% of the sand matrix. The strength properties of the prepared moulding sands were determined (bending strength Rg u , tensile strength Rm u ) after samples storing times: 1h, 2h, 4h and 24 hours.
Go to article

Abstract

The paper presents the impact of biodegradable material - polycaprolactone (PCL) on selected properties of moulding sands. A self-hardening moulding sands with phenol-furfuryl resin, which is widely used in foundry practice, and an environmentally friendly self-hardening moulding sand with hydrated sodium silicate where chosen for testing. The purpose of the new additive in the case of synthetic resin moulding sands is to reduce their harmfulness to the environment and to increase their “elasticity” at ambient temperature. In the case of moulding sands with environmentally friendly hydrated sodium silicate binder, the task of the new additive is to increase the elasticity of the tested samples while preserving their ecological character. Studies have shown that the use of 5% PCL in moulding sand increases their flexibility at ambient temperature, both with organic and inorganic binders. The influence of the new additive on the deformation of the moulding sands at elevated temperatures has also been demonstrated.
Go to article

Abstract

The ablation casting technology consists in pouring castings in single-use moulds made from the mixture of sand and watersoluble binder. After pouring the mould with liquid metal, while the casting is still solidifying, the mould destruction (washing out, erosion) takes place using a stream of cooling medium, which in this case is water. The following paper focuses on the selection of moulding sands with hydrated sodium silicate technologies for moulds devoted to the ablation casting of aluminum alloys. It has been proposed to use different types of moulding sands with a water-soluble binder, which is hydrated sodium silicate. The authors showed that the best kind of moulding sands for moulds for Al alloy casting will be moulding sands hardened with physical factors – through dehydration. The use of microwave hardened moulding sands and moulding sands made in hot-box technology has been proposed. The tests were carried out on moulding sands with different types of modified binder and various inorganic additives. The paper compares viscosity of different binders used in the research and thermal degradation of moulding sands with tested binders. The paper analyzes the influence of hardening time periods on bending strength of moulding sands with hydrated sodium silicate prepared in hot-box technology. The analysis of literature data and own research have shown that molding sand with hydrated sodium silicate hardened by dehydration is characterized by sufficient strength properties for the ablation foundry of Al alloys.
Go to article

This page uses 'cookies'. Learn more