Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

A method of using the electric charge in a capacitor was applied for the manufacture of thermocouple micro-joints. The motivation for the study was the need to produce a stable welded connection without affecting the geometry of the substrate, which was a thin sheet of Inconel 625 alloy (UNS designation N06625). Within the framework of the research work, a suitable workstation for micro-joints elaboration was built and welding experiments were performed using different electric charges. Studies carried out within the framework of the present work have shown that joints based on Inconel 625 alloy and platinum have the best application properties in the range of small-scale temperature measurements. They can be used, e.g., for monitoring the temperature distribution on the inner surfaces of electric motor casings. An undeniable advantage is in this case the high thermal resistance of both materials used to produce the joint, i.e. the Inconel 625 alloy and platinum. This allows them to be used at high temperatures under atmospheric conditions.
Go to article

Abstract

Distribution of the exhaust gas temperature within the furnace of a grate boiler greatly depends on its operating parameters such as output. It has a considerably different character than temperature distributions in other types of boilers (with pulverised or fluidised bed), as it varies considerably across the chamber. Results presented in this paper have been obtained through research of a grate-fired hot water boiler with a nominal rating of some 30 MW. Measurements have been taken by introducing temperature sensors into prearranged openings placed in the boiler side walls. Investigation has been carried out for different output levels. Tests involved thermocouples in ceramic coating and aspirated thermocouples. The latter were used to eliminate influence of radiative heat transfer on measured results. Values obtained with both methods have been cross-checked.
Go to article

Abstract

Image-guided High Intensity Focused Ultrasound (HIFU) technique is dynamically developing technology for treating solid tumors due to its non-invasive nature. Before a HIFU ablation system is ready for use, the exposure parameters of the HIFU beam capable of destroying the treated tissue without damaging the surrounding tissues should be selected to ensure the safety of therapy. The purpose of this work was to select the threshold acoustic power as well as the step and rate of movement of the HIFU beam, generated by a transducer intended to be used in the HIFU ablation system being developed, by using an array of thermocouples and numerical simulations. For experiments a bowl-shaped 64-mm, 1.05 MHz HIFU transducer with a 62.6 mm focal length (f-number 0.98) generated pulsed waves propagating in two-layer media: water/ex vivo pork loin tissue (50 mm/40 mm) was used. To determine a threshold power of the HIFU beam capable of creating the necrotic lesion in a small volume within the tested tissue during less than 3 s each tissue sample was sonicated by multiple parallel HIFU beams of different acoustic power focused at a depth of 12.6 mm below the tissue surface. Location of the maximum heating as well as the relaxation time of the tested tissue were determined from temperature variations recorded during and after sonication by five thermo-couples placed along the acoustic axis of each HIFU beam as well as from numerical simulations. The obtained results enabled to assess the location of each necrotic lesion as well as to determine the step and rate of the HIFU beam movement. The location and extent of the necrotic lesions created was verified using ultrasound images of tissue after sonication and visual inspection after cutting the samples. The threshold acoustic power of the HIFU beam capable of creating the local necrotic lesion in the tested tissue within 3 s without damaging of surrounding tissues was found to be 24 W, and the pause between sonications was found to be more than 40 s.
Go to article

This page uses 'cookies'. Learn more