Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The research was aimed at examining the impact of the petrographic composition of coal from the Janina mine on the gasification process and petrographic composition of the resulting char. The coal was subjected to fluidized bed gasification at a temperature below 1000°C in oxygen and CO2 atmosphere. The rank of coal is borderline subbituminous to bituminous coal. The petrographic composition is as follows: macerals from the vitrinite (61.0% vol.); liptinite (4.8% vol.) and inertinite groups (29.0% vol.). The petrofactor in coal from the Janina deposit is 6.9. The high content of macerals of the inertinite group, which can be considered inert during the gasification, naturally affects the process. The content of non-reactive macerals is around 27% vol. The petrographic analysis of char was carried out based on the classification of International Committee for Coal and Organic Petrology. Both inertoid (34.7% vol.) and crassinetwork (25.1% vol.) have a dominant share in chars resulting from the above-mentioned process. In addition, the examined char contained 3.1% vol. of mineroids and 4.3% vol. of fusinoids and solids. The calculated aromaticity factor increases from 0.75 in coal to 0.98 in char. The carbon conversion is 30.3%. Approximately 40% vol. of the low porosity components in the residues after the gasification process indicate a low degree of carbon conversion. The ash content in coal amounted to 13.8% and increased to 24.10% in char. Based on the petrographic composition of the starting coal and the degree of conversion of macerals in the char, it can be stated that the coal from the Janina deposit is moderately suitable for the gasification process.
Go to article

Abstract

Activation of tyre pyrolysis char (TPC) can significantly increase its market value. To date, it has been frequently carried out in different reactors. In this work, thermogravimetric analysis was used instead. The performance of activated pyrolysis chars was tested by adsorption of acetone vapour and comparison of the equilibrium adsorption capacities for all samples. The highest equilibrium adsorption capacity was observed for the carbon burn-off of #24; 60%. In addition, the equilibrium adsorption capacity of activated TPC decreases by about 10% after eleven adsorption/desorption cycles. Moreover, activation changed the porous structure of pyrolysis chars from mesoporous to micro-mesoporous.
Go to article

Abstract

Experimental investigations and numerical simulations have been conducted in this study to derive and test the values of kinetic parameters describing oxidation and gasification reactions between char carbon and O2 and CO2 occurring at standard air and oxy-fuel combustion conditions. Experiments were carried out in an electrically heated drop-tube at heating rates comparable to fullscale pulverized fuel combustion chambers. Values of the kinetic parameters, obtained by minimization of the difference between the experimental and modeled values of char burnout, have been derived and CFD simulations reproducing the experimental conditions of the drop tube furnace confirmed proper agreement between numerical and experimental char burnout.
Go to article

Abstract

cAMP is a second messenger which plays a regulatory role in a wide variety of biological processes in organisms ranging from prokaryotes to higher eukaryotes, but knowledge of its role in macroalgae and vascular plants is limited. We modified cAMP levels in the macroalga Chara vulgaris thallus and studied the effects on thallus growth and gametangia development: db-cAMP (permeable analog of cAMP), adenylate cyclase (AC) activator, forskolin and theophylline (cAMP phosphodiesterase (PDE) inhibitor) were used to elevate cAMP levels, and the AC inhibitors 2'-dAdo and 2'-d3'-AMP were used to decrease them. The results suggest that in Chara vulgaris the cAMP pathway may regulate both vegetative thallus growth and gametangia development, and that these effects may depend on this second-messenger level. Elevated cAMP stimulated thallus growth and delayed gametangia development; decreased cAMP inhibited thallus growth and accelerated maturation of both antheridia and oogonia. These results suggest that the cAMP pathway participates in regulation of developmental processes in Chara vulgaris and that thallus growth and gametangia development require different cAMP levels in cells.
Go to article

Abstract

The aim of the paper is the petrographic characterization of coal from the Wieczorek mine and the residues after its gasification. The coal was subjected to gasification in a fluidized bed reactor at a temperature of about 900°C and in an atmosphere of oxygen and CO2. The petrographic, proximate, and ultimate analysis of coal and char was performed. The petrographic composition of bituminous coal is dominated by macerals of the vitrinite group (55% by volume); macerals of inertinite and liptinite groups account for 23% and 16.0%, respectively. In the examined char, the dominant component is inertoid (41% vol.). Mixed dense and mixed porous account for 10.9% and 13.5% vol., respectively. In addition, the examined char also contained unreacted particles such as fusinoids, solids (11.3% vol.), and mineroids (5.1% vol.). The char contains around 65% vol. of low porosity components, which indicates a low degree of carbon conversion and is associated with a low gasification temperature. The char was burned and the resulting bottom and fly ashes were subjected to petrographic analysis. Their composition was compared with the composition of ashes from the combustion of bituminous coal from the Wieczorek mine. Bottom ashes resulting from the combustion of bituminous coal and char did not differ significantly in the petrographic composition. The dominant component was mineroid, which accounted for over 80% vol. When it comes to fly ash, a larger amount of particles with high porosity is observed in fly ash from bituminous coal combustion.
Go to article

Abstract

Tires play an important role in the automobile industry. However, their disposal when worn out has adverse effects on the environment. The main aim of this study was to prepare activated carbon from waste tire pyrolysis char by impregnating KOH onto pyrolytic char. Adsorption studies on lead onto chemically activated carbon were carried out using response surface methodology. The effect of process parameters such as temperature (°C), adsorbent dosage (g/100 ml), pH, contact time (minutes) and initial lead concentration (mg/l) on the adsorption capacity were investigated. It was found out that the adsorption capacity increased with an increase in adsorbent dosage, contact time, pH, and decreased with an increase in lead concentration and temperature. Optimization of the process variables was done using a numerical optimization method. Fourier Transform Infrared Spectra (FTIR) analysis, X-ray Diffraction (XRD), Thermogravimetric analysis (TGA) and scanning electron microscope were used to characterize the pyrolytic carbon char before and after activation. The numerical optimization analysis results showed that the maximum adsorption capacity of 93.176 mg/g was obtained at adsorbent dosage of 0.97 g/100 ml, pH 7, contact time of 115.27 min, initial metal concentration of 100 mg/and temperature of 25°C. FTIR and TGA analysis showed the presence of oxygen containing functional groups on the surface of the activated carbon produced and that the weight loss during the activation step was negligible.
Go to article

This page uses 'cookies'. Learn more