Search results

Filters

  • Journals

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Spectrometry, especially spectrophotometry, is getting more and more often the method of choice not only in laboratory analysis of (bio)chemical substances, but also in the off-laboratory identification and testing of physical properties of various products, in particular - of various organic mixtures including food products and ingredients. Specialised spectrophotometers, called spectrophotometric analysers, are designed for such applications. This paper is on the state of the art in the domain of data processing in spectrophotometric analysers of food (including beverages). The following issues are covered: methodological background of food analysis, physical and metrological principles of spectrophotometry, the role of measurement data processing in spectrophotometry. General considerations are illustrated with examples, predominantly related to wine and olive oil analysis.
Go to article

Abstract

Due to the difficulty of detecting traces of organic acid mixture in an aqueous sample and the complexity of resolving UV-Vis spectra effectively, a combinatory method based on a self-made radical electric focusing solid phase extraction (REFSPE) device, UV-Vis detection and partial least squares (PLS) calculation is proposed here. In this study, REFSPE was used to enhance the extraction process of analytes between the aqueous phase and the membrane phase to enrich the trace of mixed organic acid efficiently. Then, the analytes, which were eluted from the adsorption film by ethanol with the assistance of an ultrasonic cleaning machine, were detected with UV-Vis spectrophotometry. After that, the PLS method was introduced to solve the problem of overlapping peaks in UV-Vis spectra of mixed substances and to quantify each compound. The linearly dependent coefficients between the predicted value of the model and the actual concentration of the sample were all higher than 0.99. The limit values of detection for benzoic acid, phthalic acid and p-toluene sulfonic acid were found at 9.9 #22;g/L, 12.2 #22;g/L and 13.8 #22;g/L with the relative recovery values between 84.8% and 117.9%. The RSD (n = 20) values of each component are 1.17%, 1.11% and 0.86%, respectively. Therefore, the proposed combined method can determine traces of complex materials in an aqueous sample efficiently and has wonderful potential applications.
Go to article

Abstract

Spectrophotometry is an analytical technique of increasing importance for the food industry, applied i.a. in the quantitative assessment of the composition of mixtures. Since the absorbance data acquired by means of a spectrophotometer are highly correlated, the problem of calibration of a spectrophotometric analyzer is, as a rule, numerically ill-conditioned, and advanced data-processing methods must be frequently applied to attain an acceptable level of measurement uncertainty. This paper contains a description of four algorithms for calibration of spectrophotometric analyzers, based on the singular value decomposition (SVD) of matrices, as well as the results of their comparison - in terms of measurement uncertainty and computational complexity - with a reference algorithm based on the estimator of ordinary least squares. The comparison is carried out using an extensive collection of semi-synthetic data representative of trinary mixtures of edible oils. The results of that comparison show the superiority of an algorithm of calibration based on the truncated SVD combined with a signal-to-noise ratio used as a criterion for the selection of regularisation parameters - with respect to other SVD-based algorithms of calibration.
Go to article

This page uses 'cookies'. Learn more