Search results

Filters

  • Journals
  • Date

Search results

Number of results: 14
items per page: 25 50 75
Sort by:

Abstract

The paper reports meiotic studies on 50 populations comprising 12 species belonging to 5 genera of Caryophyllaceae from the Western Himalayas. The chromosome numbers in Arenaria kashmirica (n=20), Silene conoidea (n=20), S. edgeworthii (n=12 and n=24), S. moorcroftiana (n=24), S. nepalensis (n=12), Stellaria media (n=13), S. monosperma (n=13) and S. semivestita (n=13) are reported for the first time. The chromosome numbers in Lychnis coronaria (n=12) and Silene vulgaris (n=24) are given for the first time from India, along with Gypsophilla ceratioides (n=15) from the Western Himalayas. The course of meiosis varies from normal to abnormal in different populations of Silene conoidea, S. edgeworthii, S. vulgaris, Stellaria media, S. monosperma and S. semivestita. The course of meiosis was abnormal in all studied populations of Lychnis coronaria. Abnormal microsporogenesis (cytomixis, chromosomal stickiness, unoriented bivalents, formation of laggards and bridges) led to reduced pollen fertility and differences in pollen grain size.
Go to article

Abstract

Chromosome numbers of 46 Hieracium L. and Pilosella Vaill. taxa from Austria, Bulgaria, Czech Republic, Macedonia, Montenegro, Poland, Romania, Serbia and Slovakia are presented. Chromosomes numbers are given for the first time for Hieracium amphigenum Briq. 2n = 3× = 27, H. bohatschianum Zahn 2n = 4× = 36, H. borbasii R. Uechtr. 2n = 4× = 36, H. cernuum Friv. 2n = 2× = 18, H. hazslinszkyi Pax 2n = 3× = 27, H. mirekii Szeląg 2n = 4× = 36, H. polyphyllobasis (Nyár. & Zahn) Szeląg 2n = 3× = 27, H. porphyriticum A. Kern. 2n = 4× = 36, H. racemosum Waldst. & Kit. ex Willd. subsp. racemosum 2n = 3× = 27, H. scardicum Borm. & Zahn 2n = 4× = 36, H. sparsum subsp. ipekanum Rech. fil. & Zahn 2n = 4× = 36, H. sparsum subsp. peristeriense Behr & Zahn, H. sparsum subsp. squarrosobracchiatum Behr & al. 2n = 3× = 27, H. tomosense Simk. 2n = 4× = 36, H. tubulare Nyár. 2n = 4× = 36, H. werneri Szeląg 2n = 3× = 27 and Pilosella fusca subsp. subpedunculata (Zahn) Szeląg, as well as five species of Hieracium sect. Cernua R. Uechtr. not described to date and a hybrid between H. bifidum s. lat. and H. pojoritense Woł
Go to article

Abstract

We used chromosome data to verify the taxonomic affiliation of specimens previously recognized as Brachyactis ciliata. All analyzed plants were diploids based on x = 7 (2n = 2x = 14), the basic number characteristic for Symphyotrichum ciliatum, allowing the examined species to be shifted from the genus Brachyactis to the genus Symphyotrichum sect. Conyzopsis. The chromosome number (2n = 2x = 14) for specimens of S. ciliatum from Poland is reported for the first time.
Go to article

Abstract

Chromosome numbers for 15 taxa of Hieracium L. s.str. from Bulgaria, Greece, Macedonia, Poland, Romania and Slovakia are given and their metaphase plates are illustrated. Chromosome numbers are published for the first time for H. vagneri Pax s.str. (2n = 4x = 36), H. wiesbaurianum subsp. herculanum Zahn (2n = 4x = 36), H. wiesbaurianum subsp. kelainephes Nyár. & Zahn (2n = 3x = 27), as well as for two undescribed species of hybrid origin between H. umbellatum L. and H. wiesbaurianum s.lat. (2n = 3x = 27), and between H. sparsum Friv. and H. schmidtii s.lat. (2n = 3x = 27), and for three undescribed species of the H. djimilense agg. (2n = 3x = 27), H. heldreichii agg. (2n = 3x = 27), and H. sparsum agg. (2n = 3x = 27). Furthermore, the chromosome numbers of two undescribed species of hybrid origin between H. umbellatum L. and H. wiesbaurianum s.lat. (2n = 3x = 27), and between H. sparsum Friv. and H. schmidtii s.lat. (2n = 3x = 27) are given. A new, tetraploid chromosome number is given for H. barbatum Tausch from the northernmost locality of the species in Europe.
Go to article

Abstract

The present work deals with population-based meiotic studies on eight species belonging to four genera of the family Commelinaceae from different regions of Kangra Valley which is well known for its rich floristic diversity. At the world level, different cytotypes for four species such as Commelina hasskarlii (2n = 22, 60), C. kurzii (2n = 60), Murdannia nudiflora (2n = 24) and M. spirata (2n = 24) have been recorded for the first time at various ploidy levels. Additionally, from India, the new chromosome count for Tradescantia pallida (2n = 24) has been reported at the tetraploid level. The course of meiosis has been found to be normal in all the populations of Commelina benghalensis, C. paludosa, Murdannia nudiflora and M. spirata while four species, Commelina hasskarlii, C. kurzii, Cyanotis cristata and Tradescantia pallida have shown a normal to abnormal meiotic course in different populations. These meiotic abnormalities have revealed a clear effect on the pollen size and pollen fertility.
Go to article

Abstract

Our cytomorphological study of various populations of Elsholtzia ciliata (Lamiaceae) collected from high-altitude sites of Kashmir Himalaya revealed two euploid cytomorphotypes, diploid (n=8) and tetraploid (n=16), growing sympatrically but inhabiting two different habitats. This is the first report of tetraploid (4×) E. ciliata from the Indian subcontinent. We found the course of meiois to be normal in diploids, but tetraploid individuals showed chromosome and meiotic irregularities: cytomixis at early prophase I, stickiness at metaphase I, and chromosome bridges at anaphase I. In tetraploids, 23 of the 26 pollen mother cells observed at metaphase I showed 0-6 quadrivalents, suggesting that the tetraploid is a segmental allopolyploid. Microsporogenesis was also abnormal in tetraploids, showing the formation of triads. All these anomalies are conducive to lower reproductive potential (40.70%) in tetraploids than in diploids (90.50%). Significant morphological differences between the two cytotypes are presented.
Go to article

Abstract

Until recently, Festuca arietina was practically an unknown species in the flora of Eastern Europe. Such a situation can be treated as a consequence of insufficient studying of Festuca valesiaca group species in Eastern Europe and misinterpretation of the volume of some taxa. As a result of a complex study of F arietina populations from the territory of Ukraine (including the material from locus classicus), Belarus and Lithuania, original anatomy, morphology and molecular data were obtained. These data confirmed the taxonomical status of F arietina as a separate species. Eleven morphological and 12 anatomical characters, ITS1-5.8S-ITS2 cluster of nuclear ribosomal genes, as well as the models of secondary structure of ITS1 and ITS2 transcripts were studied in this approach. It was found for the first time that F arietina is hexaploid (6x = 42), which is distinguished from all the other narrow-leaved fescues by specific leaf anatomy as well as in ITS1-5.8S-ITS2 sequences. Molecular data indicating possible hybridogenous origin of F arietina, fall in line with the anatomical-morphological data and explain the tendency toward sclerenchyma strands fusion with formation of a continuous ring in F arietina, as well as E arietina ecological confinement to psammophyte biotopes.
Go to article

Abstract

Our survey of data collected in the Chromosome Number Database for Polish angiosperms indicated that the 1,498 species with chromosome counts represent 40% of the total angiosperms (3,719) occurring in Poland, including 1,205 native species (53% of native species) and 194 anthropophytes (56% of anthropophytes). The chromosome numbers are known for all native species occurring in Poland within 298 genera and 46 families, and for all anthropophytes from 79 genera and 11 families. The remaining angiosperm groups are less explored: chromosome counts from Poland are known for 9% of cultivated species and 5% of ephemerophytes. According to generic basic chromosome numbers, 46.44% of Polish angiosperms have been classified as polyploid. By three different threshold methods, the contribution of polyploid plants to the Polish flora is 64.64%, 50.89% or 42.89%. Polyploidy is more common among indigenous than non-indigenous plants, and the ploidy distribution among plants from the Polish Tatras does not differ significantly from that observed in the rest of native Polish plants.
Go to article

Abstract

Intraspecific changes in genome size and chromosome number lead to divergence and species evolution. Heavy metals disturb the cell cycle and cause mutations. Areas contaminated by heavy metals (metalliferous sites) are places where microevolutionary processes accelerate: very often only a few generations are enough for a new genotype to arise. This study, which continues our long-term research on Viola tricolor (Violaceae), a species occurring on both metalliferous (Zn, Pb, Cd, Cu) and non-metalliferous soils in Western and Central Europe, is aimed at determining the influence of environments polluted with heavy metals on genome size and karyological variability. The genome size of V. tricolor ranged from 3.801 to 4.203 pg, but the differences between metallicolous and non-metallicolous populations were not statistically significant. Altered chromosome numbers were significantly more frequent in material from the polluted sites than from the non-polluted sites (43% versus 28%). Besides the standard chromosome number (2n = 26), aneuploid cells with lower (2n = 18-25) or higher (2n = 27, 28) chromosome numbers were found in plants from both types of site, but polyploid (2n = 42) cells were observed only in plants from the metalliferous locality. The lack of correlation between chromosome variability in root meristematic cells and genome size estimated from peduncle cells can be attributed to elimination of somatic mutations in generative meristem, producing chromosome-stable non-meristematic tissues in the peduncle.
Go to article

Abstract

Here we report the consequences of telomere erosion in Arabidopsis thaliana, studied by examining seed and pollen production and the course of male meiosis through the last five generations (G5-G9) of telomerase-deficient Arabidopsis mutants. We used a previously described mutant line in which telomerase activity was abolished by T-DNA insertion into the TERT gene encoding telomerase reverse transcriptase. Reduced fertility accompanied by morphological abnormalities occurred in G6, which produced on average 35 seeds per silique (vs. 43 in wild type) and worsened in G7 (30 seeds) and G8 (14 seeds), as did the morphological abnormalities. The last generation of tert mutants (G9) did not form reproductive organs. Analysis of meiosis indicated that the main cause of reduced fertility in the late generation tert mutants of Arabidopsis was the numerous chromosomal end-to-end fusions which led to massive genome rearrangements in meiocytes. Fusion of meiotic chromosomes began in G5 and increased in each of the next generations. Unpaired chromosomes (univalents) were observed in G7 and G8. The study highlights some differences in the meiotic consequences of telomere shortening between plant and animal systems.
Go to article

Abstract

Allium cepa var. agrogarum L. seedlings grown in nutrient solution were subjected to increasing concentrations of Cd2+ (0, 1, 10, 100 μM). Variation in tolerance to cadmium toxicity was studied based on chromosome aberrations, nucleoli structure and reconstruction of root tip cells, Cd accumulation and mineral metabolism, lipid peroxidation, and changes in the antioxidative defense system (SOD, CAT, POD) in leaves and roots of the seedlings. Cd induced chromosome aberrations including C-mitoses, chromosome bridges, chromosome fragments and chromosome stickiness. Cd induced the production of some particles of argyrophilic proteins scattered in the nuclei and even extruded from the nucleoli into the cytoplasm after a high Cd concentration or prolonged Cd stress, and nucleolar reconstruction was inhibited. In Cd2+-treated Allium cepa var. agrogarum plants the metal was largely restricted to the roots; very little of it was transported to aerial parts. Adding Cd2+ to the nutrient solution affected mineral metabolism. For example, at 100 μM Cd it reduced the levels of Mn, Cu and Zn in roots, bulbs and leaves. Malondialdehyde content in roots and leaves increased with treatment time and increased concentration of Cd. Antioxidant enzymes appear to play a key role in resistance to Cd under stress conditions.
Go to article

Abstract

The authors report the first discovery of diploid populations of Hieracium naegelianum Panč. subsp. naegelianum and H. naegelianum subsp. ljubotenicum Behr & Zahn., and give the first chromosome counts for H. cernuum Friv., H. gymnocephalum Griseb. ex Pant., H. sparsum Friv., Pilosella pavichii (Heuff.) Holub and P. serbica (F. W. Schultz & Schultz-Bip.) Szeląg from Macedonia and/or Montenegro. A diploid chromosome count for Hieracium renatae Szeląg is confirmed based on material from the whole distribution range of the species. An emasculation experiment showed that all the analyzed diploid Hieracium taxa reproduce sexually.
Go to article

Abstract

We used germination tests to assess the frequency of polyembryony in 9 asparagus cultivars with a high propensity to produce double embryos with different ploidy levels: Alpha, Andreas, Boonlim, Cipres, Eposs, Helios, Limbras, Ravel and Sartaguda. Twin embryos inside a single seed were found in 3 cultivars: Eposs 2n, Ravel 2n and Sartaguda 2n, at 0.60% frequency (15 seeds with twin embryos out of 2500 seeds). Of 30 obtained seedlings, 14 were separated diploid-diploid twins, 6 were conjoined diploid pairs, 8 were separated diploid-haploid and 2 were diploid-haploid pairs conjoined in the hypocotyl region. Some embryos showed unilateral dominance of one embryo (size and shape). The haploid status of the smallest embryo was confirmed by chromosome number (n=x=10) and flow cytometry (nuclear C DNA amount 1.95 pg). The haploid obtained in this manner possessed enough vegetative vigor to undergo chromosome doubling.
Go to article

Abstract

Somatic chromosome numbers are given for the following Taraxacum species: T. pieninicum, 2n=16; T. dentatum, 2n=24; T. fascinans, 2n=24; T. mendax, 2n=40; T. subalpinum, 2n=24; T. telmatophilum, 2n=24; T. cyanolepis, 2n=24; T. fulgidum, 2n=24; T. gentile, 2n=24; and T. undulatum, 2n=24. Chromosome numbers from Poland are published for the first time for T. dentatum, T. fascinans, T. mendax, T. subalpinum, T. telmatophilum, T. cyanolepis, T. fulgidum, T. gentile and T. undulatum.
Go to article

This page uses 'cookies'. Learn more