Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 63
items per page: 25 50 75
Sort by:

Abstract

Coal reserves in the Czech Republic are estimated to be 10 billion tons – hard coal about 37%, brown coal about 60% and lignite 3%. Hard coal is produced in Northern Moravia. In 2017 the production of hard coal was 5.5 million tons. Brown coal is mined in North-Western Bohemia − the production of brown coal in 2017 was 38.1 million tons. Significant quantities of hard coal are exported to: Slovakia, Austria, Germany and Hungary. In accordance with the National Energy Policy, coal will remain the main source of energy in the country in the future, despite the increased use of nuclear energy and natural gas. The government expects that in 2030 energy from coal will account for 30.5% of energy produced. There are five coal companies in the Czech Republic: OKD, a.s., the only hard coal producer and four brown coal mining companies: Severočeské Doly a.s., owned by ČEZ, the largest producer of brown coal, Vršanská uhelná a.s., with coal resources until 2055, Severní energetická a.s. with the largest brown coal reserves in the Czech Republic and Sokolovska uhelná a.s., the smallest mining company extracting lignite. OKD operates coal in two mines Kopalnia Důlní závod 1 – (consists of three mines: ČSA Mine, Lazy Mine, Darkov Mine) and Mine Důlní závod 2 (ttwo mines Sever, Jih). The article also presents a pro-ecological solution for the management of waste heaps after coal enrichment – a plant for the enrichment of coal waste from the Hermanice heap.
Go to article

Abstract

In recent years, the Budryk Coal Mine (KWK Budryk) reached the mining depth of 1300 m, where there is about 160 million tons of coal, including 120 million tons of coking coal (type 35). The task of the Coal Processing Plant complex modernization was undertaken. The article presents the modernization of coal screening, classification and dewatering systems at the KWK Budryk Processing Plant and the implementation of screening of PROGRESS ECO sp. z o.o. SK. The modernization project defined the following technical requirements for all screens in the KWK Budryk Coal Processing Plant extension project: - Vibrating screens with a linear type drive with a drive unit placed on the drive beam of the trommel screen in the form of vibration generators; - Screen drives equipped with a starting-braking device; - The use of main screen drive bearings with a nominal service life of at least 40,000 man-hours; - All work surfaces made of materials with a strength of up to 80 mm grain and abrasion resistance; side strips and sieves fixed in a way ensuring trouble-free operation, and at the same time quick and easy replacement; - Sheets made of stainless steel; - Side walls, beams and other elements attached to them connected with screws using a system protecting against corrosion and elements separation; - The use of a work parameters monitoring and visualization system, i.e. - pitch of the riddle, - bearing operating temperatures and the condition of their wear. Three types of screens were provided: - PWP1-1Z-2,8x6,0 screeners that alternatively perform sieving or desliming processes, - PWP1-2.4x6.0 screening machines performing desliming processes, - PWP1-2.0x6.0 screens performing the classification process.
Go to article

Abstract

Thin coal seams found in the Lions Cove Formation, Polonia Glacier Group (Middle Eocene, upper part) at King George Bay, King George Island (South Shetland Islands, West Antarctica), represent lustrous (vitrine) brown-coal metaphase. The coal from the lower seam represents carbonized wood, probably angiosperm, that from the upper ones originated due to accumulation of branches or larger wood fragments and leaf remains. These coals are slightly older than metaxylite brown coal previously described from Admiralty Bay on King George Island, and dated at Eocene-Oligocene boundary. Both coal occurrences are evidences for a warm climate which prevailed in the Antarctic Peninsula sector during the Arctowski Interglacial (ca 50—32 Ma).
Go to article

Abstract

The study included bituminous coal seams (30 samples coal from the Bogdanka and Chełm deposits) of the Lublin Formation, the most coal-bearing strata in the best developed and recognized in terms of mining parts of the Lublin Coal Basin in Poland. High phosphorus concentrations in coal of the Lublin Formation were found (1375 g/Mg) as well as P2O5 in coal ash (2.267 wt%). The phosphorus contents in coal and coal ash from the 385 and 391 coal seams in the area of the Lubelski Coal Bogdanka Mine and in the area of its SE neighbor is the highest (max. 2.644 wt. % in coal and 6.055 wt. % of P2O5 in coal ash). It has been shown that mineral matter effectively affects phosphorus contents in coal and coal ash. At the same time, phosphate minerals (probably apatite and crandallite) present in kaolinite aggregates of tonsteins contain the most of phosphorus and have the greatest impact on the average P content in the 382, 385, 387, and 391. The secondary source of phosphorus in these coal seams and main source of phosphorus in these coal deposits that do not contain mineral matter of pyroclastic origin (378, 389, 394) may be clay minerals, which absorbed phosphorus compounds derived from organic matter released during coalification. Phosphorus-rich ash from the combustion of the Lublin Formation coal tend to be environmentally beneficial to the environment and also useful for improving the soil quality. Due to the low degree of coalification and high content of phosphorus in coal, this coals of little use for coking.
Go to article

Abstract

Explosions of coal dust are a major safety concern within the coal mining industry. The explosion and subsequent fires caused by coal dust can result in significant property damage, loss of life in underground coal mines and damage to coal processing facilities. The United States Bureau of Mines conducted research on coal dust explosions until 1996 when it was dissolved. In the following years, the American Society for Testing and Materials (ASTM) developed a test standard, ASTM E1226, to provide a standard test method characterizing the “explosibility” of particulate solids of combustible materials suspended in air. The research presented herein investigates the explosive characteristic of Pulverized Pittsburgh Coal dust using the ASTM E1226-12 test standard. The explosibility characteristics include: maximum explosion pressure, (Pmax); maximum rate of pressure rise, (dP/dt)max; and explosibility index, (Kst). Nine Pulverized Pittsburgh Coal dust concentrations, ranging from 30 to 1,500 g/m3, were tested in a 20-Liter Siwek Sphere. The newly recorded dust explosibility characteristics are then compared to explosibility characteristics published by the Bureau of Mines in their 20 liter vessel and procedure predating ASTM E1126-12. The information presented in this paper will allow for structures and devices to be built to protect people from the effects of coal dust explosions.
Go to article

Abstract

Control of the technological processes of coal enrichment takes place in the presence of wide disturbances. Thus, one of the basic tasks of the coal enrichment process control systems is the stabilization of coal quality parameters at a preset level. An important problem is the choice of the controller which is robust for a variety of disturbances. The tuning of the controller parameters is no less important in the control process . Many methods of tuning the controller use the dynamic characteristics of the controlled process (dynamic model of the controlled object). Based on many studies it was found that the dynamics of many processes of coal enrichment can be represented by a dynamic model with properties of the inertial element with a time delay. The identification of object parameters (including the time constant) in industrial conditions is usually performed during normal operation (with the influence of disturbances) from this reason, determined parameters of the dynamic model may differ from the parameters of the actual process. The control system with controller parameters tuned on the basis of such a model may not satisfy the assumed control quality requirements. In the paper, the analysis of the influence of changes in object model parameters in the course of the controlled value has been carried out. Research on the controller settings calculated according to parameters T and τ were carried out on objects with other parameter values. In the studies, a sensitivity analysis method was used. The sensitivity analysis for the three methods of tuning the PI controller for the coal enrichment processes control systems characterized by dynamic properties of the inertial element with time delay has been presented. Considerations are performed at various parameters of the object on the basis of the response of the control system for a constant value of set point. The assessment of considered tuning methods based on selected indices of control quality have been implemented.
Go to article

Abstract

The analysis of leaching behavior of harmful substances, such as arsenic, is one of the parameters of risk assessment resulting from the storage or economic use of coal waste. The leachability depends both on the environmental conditions of the storage area as well as on the properties of the waste material itself. There are a number of leaching tests that allow to model specific conditions or measure the specific properties of the leaching process. The conducted research aimed at comparing two methods with different application assumptions. The study of arsenic leaching from waste from the hard coal enrichment process was carried out in accordance with the Polish PN-EN 12457 standard and the US TCLP procedure. The leaching results obtained with both methods did not exceed the limit values of this parameter, defined in the Polish law. Both methods were also characterized by the good repeatability of the results. The use of an acetic acid solution (TCLP method) resulted in three times higher arsenic leaching from the examined waste compared to the use of deionized water as a leaching fluid (method PN-EN 12457). Therefore, the use of organic acid tests for mining waste intended for storage with municipal waste should be considered, as the results of the basic test based on clean water leaching may be inadequate to the actual leaching of arsenic under such environmental conditions.
Go to article

Abstract

Gasification technology is often seen as a synonym for the clean and efficient processing of solid fuels into combustible gas containing mainly carbon monoxide and hydrogen, the two basic components of synthesis gas. First and foremost, the facts that gas may be cleaned and that a mixture with any composition may be prepared in a relatively easy and inexpensive manner influence the possibility of using gas produced in the energy and chemical industries. In the energy industry, gas may be used directly to generate heat and electricity in the systems of a steam power plant or in combined cycle systems. It is also possible to effectively separate CO2 from the system. However, in chemistry, synthesis gas may be used to produce hydrogen, methanol, synthetic gasolines, and other chemical products. The raw material for gasification is full-quality pulverized coal, but a possibility of processing low-quality sludges, combustible fractions separated from municipal waste as well as industrial waste also exists. Despite such a wide application of technology and undoubted advantages thereof, making investment decisions is still subject to high uncertainty. The paper presents the main technological applications of gasification and analyzes the economic effectiveness thereof. In this context, significant challanges for the industrial implementation of this technology are discussed
Go to article

Abstract

The article presents the challenges faced by the hard coal mining sector in Poland. The biggest challenge results from a decrease in the demand for coal, which was triggered mainly by the climate policy, including the tightening of environmental standards and an increase in the efficiency of generating units. The fundamental model of the MRÓWKA domestic coal market has been described. The model allows for determining the marginal price of a given fuel for a given generating unit in the system and the optimal mix of fuels to meet the energy demand. The results of the model calculations for the baseline and alternative scenarios were presented. It has been shown that the optimal distribution of coal mining capacities promotes the import of the discussed fuel in the north-eastern part of the country and that the individual customer valuation leads to a decrease in the competitiveness of the units located in the central-western part of the country. The paper also discusses the potential impact of the domestic oversupply on the balance sheet and the price of coal. According to the obtained results and the basic laws of economics, an oversupply of coal leads to a decrease in prices. For the analyzed variants, the dependence of prices was estimated at PLN 0.0308 / GJ for every million tons of the oversupply. The fall in prices is largely due to the fuel supply to units located close to ports or railway border crossings. Based on the presented arguments it can be concluded that the maximization of financial result from the extraction of coal should be based on an analysis taking incremental changes in fuel prices into account.
Go to article

Abstract

The purpose of the article was to characterize the international steam coal market based on the latest available data. The information goes back to the first half of 2018. The article focuses on the description of the three largest exporters and importers of steam coal. Representatives in these categories were selected using the latest global statistics on 2017. In 2017, global production of steam coal amounted to 5.68 billion tons and exceeded production in 2016 by 4%. For several years, invariably the world’s leading exporters of steam coal are: Indonesia, Australia and Russia. In total, these three countries in 2017 supplied 73% of steam coal to the international market. However, for the 46% of global steam coal imports (data for 2017), three Asian countries are responsible: China, India and Japan. For each of the six listed countries (i.e. for: three major global exporters and three major global importers), the paper presents volumes related to coal production, export or import. The directions of deliveries or major coal exporters to a given country were also included. At the end of the article, the price situation was presented, as it appeared in the first half of 2018 on the European and Asian markets.
Go to article

Abstract

The paper presents selected issues related to the development of international coal markets. World consumption of coal dropped for the second year in a row in 2016, primarily due to the lower demand from China and the US. The share of coal in global primary energy consumption decreased to 28%. World coal production accounted to 3.66 billion toe and it was lower by 6.2% when compared to the previous year. More than 60% of this decline took place in China. The decline in global production was more than four times higher than the decrease in consumption. The sufficiency of the world resources of coal are estimated at 153 years – that is three times more than the sufficiency of oil and gas resources. After several years of decline, coal prices increased by 77% in 2016. The current spot prices are at the level of $80/ton and are close to the 2014 prices. In the European market, after the first half of the year, coal prices reached the level of around 66% higher than in the same period of the last year. The average price in the first half amounted to PLN 12.6/GJ, which is close to the 2012 prices. The share of spot trade in the total purchase amount accounted to approx. 20%. Prices in futures contracts can be estimated on the basis of the Japan-Australia contracts prices and prices in supplies to power plants located in Germany. On average, the prices in supplies to these power plants were higher by approximately 9% in the years 2010 – 2016 and prices in Australia – Japan contracts were 12% higher than CIF ARA prices in 2017. Global energy coal trade reached about 1.012 billion tons in 2016. A decline by 4.8% is expected in 2019 primarily due to the expected reduction in demand in major importing countries in Asia.
Go to article

Abstract

Significant quantities of coal sludge are created during the coal enrichment processes in the mechanical processing plants of hard coal mines (waste group 01). These are the smallest grain classes with a grain size below 1 mm, in which the classes below 0.035 mm constitute up to 60% of their composition and the heat of combustion is at the level of 10 MJ/kg. The high moisture of coal sludge is characteristic, which after dewatering on filter presses reaches the value of 16–28% (Wtot r) (archival paper PG SILESIA). The fine-grained nature and high moisture of the material cause great difficulties at the stage of transport, loading and unloading of the material. The paper presents the results of pelletizing (granulating) grinding of coal sludge by itself and the piling of coal sludge with additional material, which is to improve the sludge energy properties. The piling process itself is primarily intended to improve transport possibilities. Initial tests have been undertaken to show changes in parameters by preparing coal sludge mixtures (PG SILESIA) with lignite coal dusts (LEAG). The process of piling sludge and their mixtures on an AGH laboratory vibratory grinder construction was carried out. As a result of the tests, it can be concluded that all mixtures are susceptible to granulation. This process undoubtedly broadens the transport possibilities of the material. The grain composition of the obtained material after granulation is satisfactory. Up to 2 to 20 mm granules make up 90–95% of the product weight. The strength of the fresh pellets is satisfactory and comparable for all mixtures. Fresh lumps subjected to a test for discharges from a height of 700 mm can withstand from 7 to 14 discharges. The strength of the pellets after longer seasoning, from the height of 500 mm, shows different values for the analyzed samples. The values obtained for hard coal sludge and their blends with brown coal dust are at the level from 4 to 5 discharges. The strength obtained is sufficient to determine the possibility of their transport. At this stage of the work it can be stated that the addition of coal dust from lignite does not cause the deterioration of the material’s strength with respect to clean coal sludge. Therefore, there is no negative impact on the transportability of the granulated material. As a result of mixing with coal dusts, it is possible to increase their energy value (Klojzy-Karczmarczyk at al. 2018). The cost analysis of the analyzed project was not carried out.
Go to article

Abstract

The evaluation of threats connected with the presence of methane in coal seams is based on our knowledge of the total content of this gas in coal. The most important parameter determining the potential of coal seams to accumulate methane is the sorption capacity of coal a. It is heavily influenced by the degree of coalification of the coal substance, determined by the vitrinite reflectance R0 or the content of volatile matter V daf. The relationship between the degree of coalification and the sorption capacity in the area of the Upper Silesian Coal Basin (USCB) has not been thoroughly investigated, which is due to the zonation of methane accumulation in this area and the considerable changeability of methane content in various localities of the Basin. Understanding this relationship call for in-depth investigation, especially since it depends on the analyzed reflectance range. The present work attempts to explain the reasons for which the sorption capacity changes along with the degree of coalification in the area of Jastrzębie (the Zofiówka Monocline). The relationship between parameters R0 and V daf was investigated. The authors also analyzed changes of the maceral composition, real density and the micropore volume. Furthermore, coalification-dependent changes in the sorption capacity of the investigated coal seams were identified. The conducted analyses have indicated a significant role of petrographic factors in relation to the accumulation properties of the seams located in the investigated area of USCB.
Go to article

Abstract

The Bogdanka coal mine, the only currently operating mine in the Lublin Coal Basin (LCB), extracts coal from the Upper Carboniferous formations of the LCB. The average sulfur content in the No. 385/2 seam is 0.98%, while in the case of the No. 391 seam it is slightly higher and amounts to 1.15%. The iron sulfides (pyrite and marcasite) in bituminous coal seams form macroscopically visible massive, vein, and dispersed forms. A microscopic examination has confirmed their complex structure. Massive forms contain euhedral crystals and framboids. The sulfide aggregations are often associated with a halo of dispersed veins and framboids. Pyrite and marcasite often fill the fusinite cells. Framboids are highly variable when it comes to their size and the degree of compaction within the carbonaceous matter. Their large aggregations form polyframboids. The cracks are often filled with crystalline accumulations of iron sulfides (octaedric crystals). The Wavelenth Dispersive Spectrometry (WDS) microanalysis allowed the chemical composition of sulfides in coal samples from the examined depoists to be analyzed. It has been shown that they are dominated by iron sulfides FeS2 – pyrite and marcasite. The examined sulfides contain small admixtures of Pb, Hg, Zn, Cu, Ag, Sb, Co, Ni, As, and Cd. When it comes to the examined admixtures, the highest concentration of up to 0.24%, is observed for As. In addition, small amounts of galena, siderite, and barite have also been found in the examined coal samples. The amounts of the critical elements in the examined samples do not allow for their economically justified exploitation. Higher concentrations of these elements can be found in the ashes resulting from the combustion process.
Go to article

Abstract

The national power industry is based primarily on its own energy mineral resources such as hard and brown coal. Approximately 80% of electrical energy production from these minerals gives us complete energy independence and the cost of its production from coal is the lowest in comparison to other sources. Poland has, for many decades had vast resources of these minerals, the experience of their extraction and processing, the scientific-design facilities and technical factories manufacturing machines and equipment for own needs, as well as for export. Nowadays coal is and should be an important source of electrical energy and heat for the next 25–50 years, because it is one of the most reliable and price acceptable energy sources. This policy may be disturbed over the coming decades due to the depletion of active resources of hard and brown coal. The conditions for new mines development as well as for all coal mining sector development in Poland are very complicated in terms of legislation, environment, economy and image. The authors propose a set of strategic changes in the formal conditions for acquiring mining licenses. The article gives a signal to institutions responsible for national security that without proposed changes implementation in the legal and formal process it, will probably not be possible to build next brown coal, hard coal, zinc and lead ore or other minerals new mines.
Go to article

Abstract

The level of sales of a given good depends largely on the distribution network. An analysis of the distribution network allows companies to optimize business activity, which improves the efficiency and profitability of a company’s sales with an immediate effect on profit growth. The so-called spatial analysis is highly useful in this regard. The paper presents an analysis of the network of authorized dealers of the Polish Mining Group for the Opolskie Province. The analysis was done using GIS (SIP) tools. The purpose of the analysis was to present tools that could be used to verify an existing distribution network, to optimize it, or to create a new sales outlet. The prresented tools belong to GIS operations used to process data stored in Spatial Information System resources. These are so-called geoprocessing tools. The article contains several spatial analyses, which results in choosing the optimum location of the distribution point in terms of the defined criteria. The used tools include a spatial intersection and sum. Geocoding and the so-called cartodiagram were also used. The presented analysis can be performed for both the network of authorized retailers within a region, a city or an entire country. The presented tools provide the opportunity to specify the target consumers, areas where they are located and areas of potential consumer concentration. This allows the points of sale in areas with a high probability of finding new customers to be located, which enables the optimal location to be chosen, for example, in terms of access to roads, rail transport, locations of the right area and neighborhood. Spatial analysis tools will also enable the coal company to verify its already existing distribution network.
Go to article

Abstract

Coal in Poland is an available conventional fuel providing energy security and independence of the country. Therefore, conventional energy generation should be based on coal with the optimal development of renewable energy sources. Such a solution secures the energy supply based on coal and the independence of political and economic turmoil of global markets. Polish coal reserves can secure the energy supply for decades. Coal will surely be important for energy security in the future despite the growing share of oil and gas in energy mix. The development of renewable power generation will be possible with the conventional energy generation offsetting volatile renewable power generation as Poland’s climate doesn’t allow for the stable and effective use of renewable energy sources. Considering the policy of the European Union with respect to emission reductions of greenhouse gasses and general trends as reflected in the Paris agreement in 2016, as a country we will be forced to increase renewable energy production in our energy mix. However, this process cannot impact the energy security of the country and stability and the uninterrupted supply of energy to consumers. Therefore seeking the compromise with the current energy mix in Poland is the best way to its gradual change with the simultaneous conservation of each of the sources of energy. It’s obvious that Poland can not be lonely energy island in Europe and in the world, which increasingly develops distributed energy and/ renewable technologies as well as energy storage ones. One can notice that without renewable generation and the reduction of coal’s share in country’s energy mix we will become the importer of electricity with raising energy dependence.
Go to article

Abstract

Coal combustion processes are the main source of mercury emission to the environment in Poland. Mercury is emitted by both power and heating plants using hard and brown coals as well as in households. With an annual mercury emission in Poland at the level of 10 Mg, the households emit 0.6 Mg. In the paper, studies on the mercury release in the coal and biomass combustion process in household boilers were conducted. The mercury release factors were determined for that purpose. For the analyzed samples the mercury release factors ranged from 98.3 to 99.1% for hard coal and from 99.5% to 99.9% for biomass, respectively. Due to the high values of the determined factors, the amount of mercury released into the environment mainly depends on the mercury content in the combusted fuel. In light of the obtained results, the mercury content in the examined hard coals was 6 times higher than in the biomass (dry basis). Taking the calorific value of fuels into account, the difference in mercury content between coal and biomass decreased, but its content in coal was still 4 times higher. The mercury content determined in that way ranged from 0.7 to 1.7 μg/MJ for hard coal and from 0.1 to 0.5 μg/MJ for biomass, respectively. The main opportunity to decrease the mercury emissions from households is offered by the use of fuels with a mercury content that is as low as possible, as well as by a reduction of fuel consumption. The latter could be obtained by the use of modern boilers as well as by the thermo-modernization of buildings. It is also possible to partially reduce mercury emissions by using dust removal devices.
Go to article

Abstract

The paper presents brown coal as one of the two basic domestic energy raw materials apart from hard coal. Historically, the use of brown coal in Poland is primarily fuel for the power plants. It was used for the production of lignite briquettes in small quantities and as fuel for local boiler houses and as an addition to the production of fertilizers (Konin and Sieniawa). At present, after changes in the case of the quality of fuels used in local boiler plants, brown coal remains as a fuel for the power plants in almost 100%. Currently, the brown coal industry produces about 35% of the cheapest electricity. The cost of electricity production is more than 30% lower than the second basic fuel – hard coal. The existing fuel and energy complexes using brown coal, with the Bełchatów complex at the forefront, are now an important guarantor of Poland’s energy security. In contrast to the other fuels such as: oil, natural gas or hard coal, the cost of electricity production from brown coal is predictable in the long term and almost insensitive to fluctuations in global commodity and currency markets. Its exploitation is carried out using the high technological solutions and respecting all environmental protection requirements, both in the area of coal extraction and electricity generation. Importantly, the fuel and energy complexes using brown coal showed a positive profitability so far and generated surpluses enabling the financing of maintenance and development investments, also in other energy segments. In particular, the sector did not require and has yet not benefited from public aid in the form of, for example, subsidies or tax concessions. Polish brown coal mining has all the attributes necessary for long-term development to ensure the country’s energy security. The document which is a road map for the brown coal industry is the Program for the Brown Coal Mining Sector in Poland adopted by the Council of Ministers on May 30, 2018. The Program covers the years 2018–2030 with a perspective up to 2050 and presents the development directions of the brown coal mining sector in Poland together with the objectives and actions necessary to achieve them. The Program presents a strategy for the development of brown coal mining in Poland in the first half of the 21st century. Possible scenarios have developed in active mining and energy basins as well as in new regions with significant resources of this mineral. This is to enable the most efficient use of deposits in the Złoczew and Konin regions as well as the Gubin and Legnica brown coal basins, and then deposits located in the Rawicz region (Oczkowice) as well as other prospective areas that may eventually replace the existing active mining and energy areas. This will allow power plants to continue to produce inexpensive and clean electricity, using the latest global solutions in the field of clean coal technologies.
Go to article

Abstract

The frictional resistance coefficient of ventilation of a roadway in a coal mine is a very important technical parameter in the design and renovation of mine ventilation. Calculations based on empirical formulae and field tests to calculate the resistance coefficient have limitations. An inversion method to calculate the mine ventilation resistance coefficient by using a few representative data of air flows and node pressures is proposed in this study. The mathematical model of the inversion method is developed based on the principle of least squares. The measured pressure and the calculated pressure deviation along with the measured flow and the calculated flow deviation are considered while defining the objective function, which also includes the node pressure, the air flow, and the ventilation resistance coefficient range constraints. The ventilation resistance coefficient inversion problem was converted to a nonlinear optimisation problem through the development of the model. A genetic algorithm (GA) was adopted to solve the ventilation resistance coefficient inversion problem. The GA was improved to enhance the global and the local search abilities of the algorithm for the ventilation resistance coefficient inversion problem.
Go to article

Abstract

Anthracite coal matter fills irregular voids in dolostones of the Upper Proterozoic Höferpynten Formation in the Hornsund area, south Spitsbergen. The coals are of organic origin, as indicated by a variety of coal-petrographic studies, and by association with algal structures. They probably derived from bitumina accumulated in voids of dolostone at an early diagenelic stage. The degree of coalification (graphitization) is high but diversified, suggesting several coalification stages, probably related t o successive metamorphic events. The oldest changes may correspond to initial stage of t h e greenschist-amphibolite phase of regional metamorphism, with temperatures of over 500°C and pressure of over 20,000 MPa . Multiphase graphite crystallites which occur in t h e coal are mainly fibrous. There are also crystallites which precipitated from gaseous phase, and pyrolitic graphite; they may have originated due to action of mesothermal solutions which had produced ore-bearing veins.
Go to article

Abstract

The purpose of the research was mapping, inventorization, and valorization of coal mining waste dumps from the mines of JSW SA company, for the needs of recovery of coal from the dump material as well as the reclamation and management of examined facilities. The valorization of post-mining waste dumps has been carried out using a methodology which considers the problems of reclamation, management, accessibility of the dumps as well as environmental hazards connected with disposing of mining and preparation wastes on the ground surface. An inventorization of 10 coal mining waste dumps coming from 6 mines of JSW SA including in their range 7 deposits: Borynia, Jastrzębie, Zofiówka, Budryk, Knurów, Szczygłowice and Pniówek was carried out. The source material within the localization of particular dumps was obtained from archival materials coming from coal mines and municipalities where the dumps are located. Verified data has been drawn on topographical map, which results in the map of coal mining waste dumps. The results of the valorization of the dumps comprise the defining of: the name of the dump, state of the dump, surface of the dump, accessibility, name of the coal mine from where the wastes come from, type of technical and biological reclamation and possibilities of coal recovery, which have been brought on the drawn map. Basing on collected and elaborated data, an attempt of defining of potential possibilities of recovery of coal from the dumps and connection of coal quality in the deposits of JSW SA and in waste material was made. The results of the research showed that in spite of preliminary information that a majority of the investigated dumps may be considered as potential facilities for coal recovery, ultimately the recovery is economically justified only in several cases (5 facilities).
Go to article

Abstract

The new legislative provisions, regulating the trade in solid fuels in our country, draw attention to the need to develop and improve methods and methods of managing hard coal sludge. The aim of the work was to show whether filtration parameters (mainly the permeability coefficient) of hard coal sludge are sufficient for construction of insulating layers in landfills at the stage of their closing and what is the demand for material in the case of such a procedure. The analysis was carried out for landfills for municipal waste in the Opolskie, Śląskie and Małopolskie provinces. For hard coal sludge, the permeability coefficient values are in the range of 10–8–10–11 m/s, with the average value of 3.16 × 10–9 m/s. It can be concluded that this material generally meets the criteria of tightness for horizontal and often vertical flows. When compaction, increasing load or mixing with fly ash from hard coal combustion and clays, the achieved permeability coefficient often lowers its values. Based on the analysis, it can be assumed that hard coal sludge can be used to build mineral insulating barriers. At the end of 2016, 50 municipal landfills were open in the Opolskie, Śląskie and Małopolskie Provinces. Only 36 of them have obtained the status of a regional installation, close to 1/3 of the municipal landfill are within the Major Groundwater Basin (MGB) range. The remaining storage sites will be designated for closure. Assuming the necessity to close all currently active municipal waste landfills, the demand for hard coal sludge amounts to a total of 1,779,000 m3 which, given the assumptions, gives a mass of 2,704,080 Mg. The total amount of hard coal sludge production is very high in Poland. Only two basic mining groups annually produce a total of about 1,500,000 Mg of coal sludge. The construction of insulating layers in landfills of inert, hazardous and non-hazardous and inert wastes is an interesting solution. Such an application is prospective, but it will not solve the problem related to the production and management of this waste material as a whole. It is important to look for further solutions.
Go to article

Abstract

According to International Energy Agency (IEA) energy security is the continuous supply of energy at acceptable prices. National energy is based primarily on its own energy resources such as hard coal and brown coal. The 88% of electric energy production from these minerals gives us full energy independence. Additionally, the energy production costs from these raw materials are the lowest compared to other technologies. Of these two, the energy produced from brown coal is characterized by the lowest unit technical generating cost. Poland has the resources of these minerals for decades to come, the experience related to mining and processing them, scientific and design facilities and technical facilities and factories producing machines and equipment for their own needs, as well as for export. Coal is and should remain an important source of electricity and heat supply in Poland for the next 25–50 years. It is one of the most reliable and profitable energy sources. This policy may be difficult in the next decades due to the exhaustion of the available resources of hard and brown coal. The conditions for the construction of new mines, and thus for the development of coal mining in Poland, are very interdisciplinary in legal, environmental, economic and reputational terms. Germany has similar problems. Despite the fact that it is an image of a country investing in renewable energy sources, which are pioneers of energy production from RES, in reality hard and brown coal are still the primary sources utilized to produce electric energy.
Go to article

Abstract

The aim of this paper is an analysis of the variability of the methane content in coal seams in the area of the Dębieńsko Mine and it’s relation to the geological structure of this coal deposit, and also the possibilities of a methane hazard in the areas of future coal mining and methane utilization as a fuel. The Dębieńsko coal deposit is located in the western part of the Upper Silesian Coal Basin (USCB), on the boundary between folded and disjunctive tectonic zones. Coal exploitation in this area ended in 2000, but interest in this deposit is currently high due to plans to initiate coking coal mining. The area of the Dębieńsko mine is relatively well prospected because of the deep drillings (up to 2000 m in depth) carried out within it. The methane conditions of the deposit are varied, the methane content increases with depth according to northern pattern of methane distribution in the USCB, in which the high-methane zone occurs under the several hundred meters zone of natural outgassing of the coal seams. This zone is divided into two smaller methane sub-zones, the first (shallower) at a depth of 1000 m and the second (deeper) at 1700–1900 m. A sub-zone of lower methane content occurs between these two high-methane sub-zones. The most important reasons for this methane distribution are temperature and pressure facilitating the gas adsorption in coal seams, and also the presence of impermeable siltstones and shalestones as well as the maceral composition and coal rank of coal seams. The methane content also changes laterally in accordance with the tectonics of the area. The so called Knurów and Leszczyna Anticline with found increased methane content in coal seams in relation to neighboring areas as well as Orlova Overthrust together with the system of latitudinal faults of brittle tectonic regime which are possible pathways for methane migration play a special role here. These structures can be taken into account as a potential source of methane hazard in a future coal mine, they can also be promising structures for methane prospection as a fuel.
Go to article

This page uses 'cookies'. Learn more