Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 23
items per page: 25 50 75
Sort by:

Abstract

The stability analysis for discrete-time fractional linear systems with delays is presented. The state-space model with a time shift in the difference is considered. Necessary and sufficient conditions for practical stability and for asymptotic stability have been established. The systems with only one matrix occurring in the state equation at a delayed moment have been also considered. In this case analytical conditions for asymptotic stability have been given. Moreover parametric descriptions of the boundary of practical stability and asymptotic stability regions have been presented.
Go to article

Abstract

The positivity and absolute stability of a class of nonlinear continuous-time and discretetime systems are addressed. Necessary and sufficient conditions for the positivity of this class of nonlinear systems are established. Sufficient conditions for the absolute stability of this class of nonlinear systems are also given.
Go to article

Abstract

The practical and asymptotic stabilities of delayed fractional discrete-time linear systems described by the model without a time shift in the difference are addressed. The D-decomposition approach is used for stability analysis. New necessary and sufficient stability conditions are established. The conditions in terms of the location of eigenvalues of the system matrix in the complex plane are given.
Go to article

Abstract

The positive asymptotically stable continuous-time linear systems are approximated by corresponding asymptotically stable discrete-time linear systems. Two methods of the approximation are presented and the comparison of the methods is addressed. The considerations are illustrated by three numerical examples and an example of positive electrical circuit.
Go to article

Abstract

The paper addresses the problem of constrained pole placement in discrete-time linear systems. The design conditions are outlined in terms of linear matrix inequalities for the Dstable ellipse region in the complex Z plain. In addition, it is demonstrated that the D-stable circle region formulation is the special case of by this way formulated and solved pole placement problem. The proposed principle is enhanced for discrete-lime linear systems with polytopic uncertainties.
Go to article

Abstract

A new concept (notion) of the practical stability of positive fractional discrete-time linear systems is introduced. Necessary and sufficient conditions for the practical stability of the positive fractional systems are established. It is shown that the positive fractional systems are practically unstable if corresponding standard positive fractional systems are asymptotically unstable.
Go to article

Abstract

New tests (criterions) for checking the reachability and the observability of positive linear-discrete-time systems are proposed. The tests do not need checking of rank conditions of the reachability and observability matrices of the systems. Simple sufficient conditions for the unreachability and unobservability of the systems are also established.
Go to article

Abstract

A new notion of a realization of transfer matrix of (P;Q; V)-cone-system for discrete-time linear systems is proposed. Necessary and sufficient conditions for the existence of the realizations are established. A procedure is proposed for computation of a realization of a given proper transfer matrix T(z) of (P;Q; V)-cone-system. It is shown that there exists a realization of T(z) of (P;Q; V)-cone-system if and only if there exists a positive realization of T(z) = V T(z)Q!1, where V;Q and P are non-singular matrices generating the cones V;Q and P respectively.
Go to article

Abstract

A new class of positive fractional 2D hybrid linear systems is introduced. The solution of the hybrid system is derived. The classical Cayley-Hamilton theorem is extended for fractional 2D hybrid systems. Necessary and sufficient conditions for the positivity are established.
Go to article

Abstract

The Bulletin of the Polish Academy of Sciences: Technical Sciences (Bull.Pol. Ac.: Tech.) is published bimonthly by the Division IV Engineering Sciences of the Polish Academy of Sciences, since the beginning of the existence of the PAS in 1952. The journal is peer‐reviewed and is published both in printed and electronic form. It is established for the publication of original high quality papers from multidisciplinary Engineering sciences with the following topics preferred: Artificial and Computational Intelligence, Biomedical Engineering and Biotechnology, Civil Engineering, Control, Informatics and Robotics, Electronics, Telecommunication and Optoelectronics, Mechanical and Aeronautical Engineering, Thermodynamics, Material Science and Nanotechnology, Power Systems and Power Electronics. Journal Metrics: JCR Impact Factor 2018: 1.361, 5 Year Impact Factor: 1.323, SCImago Journal Rank (SJR) 2017: 0.319, Source Normalized Impact per Paper (SNIP) 2017: 1.005, CiteScore 2017: 1.27, The Polish Ministry of Science and Higher Education 2017: 25 points. Abbreviations/Acronym: Journal citation: Bull. Pol. Ac.: Tech., ISO: Bull. Pol. Acad. Sci.-Tech. Sci., JCR Abbrev: B POL ACAD SCI-TECH Acronym in the Editorial System: BPASTS.
Go to article

Abstract

The positivity of descriptor continuous-time and discrete-time linear systems with regular pencils are addressed. Such systems can be reduced to standard linear systems and can be decomposed into dynamical and static parts. Two definitions of the positive systems are proposed. It is shown that the definitions are not equivalent. Conditions for the positivity of the systems and the relationship between two classes of positive systems are established. The considerations are illustrated by examples of electrical circuits and numerical examples.
Go to article

Abstract

The minimum energy control problem for the positive descriptor discrete-time linear systems with bounded inputs by the use of Weierstrass-Kronecker decomposition is formulated and solved. Necessary and sufficient conditions for the positivity and reachability of descriptor discrete-time linear systems are given. Conditions for the existence of solution and procedure for computation of optimal input and the minimal value of the performance index is proposed and illustrated by a numerical example.
Go to article

Abstract

The positive (minimal) realization problem for a class of singular discrete-time linear single-input, single-output systems with delays in state and delays in control is addressed. Solvability conditions for the positive (minimal) realization problem are established. It is shown that there exists a positive (minimal) realization of an improper transfer function T(z) = n(z) / d(z) if the coefficients of polynomial n(z) are non-negative and of the polynomial d(z) are non-positive except the leading one, which should be positive. A procedure for computation of the positive (minimal) realization of the transfer function is proposed and illustrated by an example.
Go to article

Abstract

Simple new necessary and sufficient conditions for asymptotic stability of the positive linear discrete-time systems with delays in states are established. It is shown that asymptotic stability of the system is equivalent to asymptotic stability of the corresponding positive discrete-time system without delays of the same size. The considerations are illustrated by numerical examples.
Go to article

Abstract

Necessary and sufficient conditions for robust stability of the positive discrete-time interval system with time-delays are established. It is shown that this system is robustly stable if and only if one well de?ned positive discrete-time system with time-delays is asymptotically stable. The considerations are illustrated by numerical example.
Go to article

Abstract

Simple necessary and sufficient conditions for robust stability of the positive linear discrete-time systems with delays with linear uncertainty structure in two cases: 1) unity rank uncertainty structure, 2) non-negative perturbation matrices, are established. The proposed conditions are compared with the suitable conditions for the standard systems. The considerations are illustrated by numerical examples.
Go to article

Abstract

In this paper we study the dynamical behavior of linear discrete-time fractional systems. The first main result is that the norm of the difference of two different solutions of a time-varying discrete-time Caputo equation tends to zero not faster than polynomially. The second main result is a complete description of the decay to zero of the trajectories of one-dimensional time-invariant stable Caputo and Riemann-Liouville equations. Moreover, we present Volterra convolution equations, that are equivalent to Caputo and Riemann-Liouvile equations and we also show an explicit formula for the solution of systems of time-invariant Caputo equations.
Go to article

Abstract

In the paper there has been made an advantage of the non-classical operational calculus to determination of the response of the certain discrete time-systems. The Z-transform is often used to analysis of the stationary discrete time-systems. However, the use of the Z-transform to determination of the response especially of the non-stationary discrete time-systems is doubtful or may cause complications. This method leads to differential equations of n-th order of variable coefficients, whose solutions are very difficult or impossible. The non-classical operational calculus can be used to analysis both of the stationary and non-stationary discrete time-systems. The presented method with the use of the Heaviside operator soon leads to the target without unnecessary differential equations.
Go to article

This page uses 'cookies'. Learn more