Search results

Filters

  • Journals
  • Keywords

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The article presents the current state of the CNG market used as an alternative fuel for car engines. Attention was paid to European Union directives requirements and the current state of the directives’ fulfillment. The economic aspect of CNG usage was analyzed and the approximate costs of driving 10,000 km on different fuels in the last four years were presented. The PtG process which uses electric energy (hydrogen production) and carbon dioxide captured from the flue gas for the production of synthetic methane were discussed. The scheme of the SNG plant with the indication of its most important components was presented, and attention was paid to the mutual complementation of PtG technologies with carbon dioxide capture technology. The benefits of synthetic methane production are presented and the use of compressed natural gas to power engines in vehicles has been described. First, the focus was on the single-fuel use of CNG in bus and truck engines, paying particular attention to the ecological aspect of the implemented solutions. It has been shown that the use of compressed natural gas will reduce almost 100% of the particulates emission from the combustion process. The advantages and disadvantages of the alternative fuel supply are given. Next, the aspect of dual-fuel use in diesel engines was analyzed on the example of a smaller engine. The degree of reduction of harmful compounds emission from the combustion process is shown. Finally, attention was paid to the possible scale effect, referring to the number of motor vehicles in Poland.
Go to article

Abstract

Protection of the environment and counteracting global warming require finding alternative sources of energy. One of the methods of generating energy from environmentally friendly sources is increasing the share of gaseous fuels in the total energy balance. The use of these fuels in compression-ignition (CI) engines is difficult due to their relatively high autoignition temperature. One solution for using these fuels in CI engines is operating in a dualfuel mode, where the air and gas mixture is ignited with a liquid fuel dose. In this method, a series of relatively complex chemical processes occur in the engine's combustion chamber, related to the combustion of individual fuel fractions that interact with one another. Analysis of combustion of specific fuels in this type of fuel injection to the engine is difficult due to the fact that combustion of both fuel fractions takes place simultaneously. Simulation experiments can be used to analyse the impact of diesel fuel combustion on gaseous fuel combustion. In this paper, we discuss the results of simulation tests of combustion, based on the proprietary multiphase model of a dual-fuel engine. The results obtained from the simulation allow for analysis of the combustion process of individual fuels separately, which expands the knowledge obtained from experimental tests on the engine.
Go to article

This page uses 'cookies'. Learn more