Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

The paper presents the characteristics of the attitude that students have towards electric cars and the significance of distinguished attitude elements in creating interest in the purchase of such vehicles. Electric cars are the new type of vehicles that have an electric motor and use the electricity stored in batteries. They are introduced to the market, but for various reasons the volume of sales is not high. So far, it is not sufficiently known how electric vehicles are assessed by Poles. The presented research is an attempt to know what the attitude towards this type of vehicle. The attitude model tested in this research includes three areas: knowledge about them, emotions that they evoke and potential behaviors. The participants were students of Rzeszów University of Technology – a group of young people who are potential consumers of new technologies. The obtained results indicate that electric cars are rather unknown. At the same time, they arouse great interest and their image is very positive. The attitude characteristics towards this type of vehicle is supplemented by perceived limitations: too high of a purchase price, lack of sufficient information about them and unsatisfactory technical parameters, mainly the long time needed to recharge the battery and the insufficiently long distance with one recharge. The interest in the purchase is dependent on positive emotions, and the lack of sufficient information is an obstacle in thinking about buying such a vehicle. Understanding the attitudes of Polish students towards electric cars can be helpful in adapting information about such cars to potential customers, which in turn may affect the level of interest and sales volume.
Go to article

Abstract

Electric cars (SE) are currently considered to be one of the best ways to reduce CO2 and other air emissions in the transport sector as well as noise in cities. They can reduce the dependency of road transport on imported oil in a visible way. Nevertheless, the demand for electricity for a large amount of SE in road transport is not insignificant and has an impact on the power system. The article analyzes the potential impact of SE on the demand, supply, structure and costs of electricity generation as well as emissions as a result of introducing 1 million SEs by 2025 on Polish roads, and tripling this number by 2035. The competitive electricity market model ORCED was used for the calculations. The results of the analysis indicate that regardless of the charging strategy, the demand for SEs causes a slight increase in the overall electricity demand in Poland and consequently also a slight increase in power generating costs. Even a large increase in SEs in road transport will result in a rather moderate demand for additional generation capacity, assuming that power companies will have some control over the mode of charging cars. The introduction of SEs will not reduce CO2 emissions compared to conventional cars in 2025, on the contrary will increase them regardless of the loading strategy. In 2035 however, the result depends on the charging scenario and both the increase or decrease of emissions is possible. Electric vehicles will increase SO2 net emissions, but they will contribute to a decrease in the net emissions of particulates and NOx.
Go to article

Abstract

The paper presents a theoretical analysis of the effect of electric car performance characteristics on vehicle energy consumption and driving range. The test object was a Nissan Leaf electric vehicle. The characteristic curves of basic and additional resistance to motion (sum of rolling resistance and air resistance and inertia resistance or grade resistance, respectively) were applied to the model characteristic curve of electric motor torque of the tested vehicle. Based on that, the graphs describing the relationships between vehicle energy consumption and vehicle speed were made (for specific values of car acceleration / acclivity grade) as well as the relations between vehicle driving range and its traction properties. It was concluded that the use of performance characteristics significantly increased the vehicle’s energy consumption and decreased the available vehicle’s driving range.
Go to article

Abstract

A large amount of electric vehicles (EVs) charging load will bring significant impact to the power system. An appropriate resource allocation strategy is required for securing the power system safety and satisfying EVs charging demand. This paper proposed a power coordination allocation strategy of EVs’ in distribution systems. The strategy divides the allocation into two stages. The first stage is based on scores assigned to EVs through an entropy method, whereas the second stage allocates energy according to EV’s state of charge. The charging power is delivered in order to maximize EV users’ satisfaction and fairness without violation of grid constraints. Simulation on a typical power-limited residential distribution network proves the effectiveness of the strategy. The analysis re- sults indicate that compared with traditional methods, EVs, which have higher charging requirement and shorter available time will get more energy delivered than others. The root- mean-square-error (RMSE) and standard-deviation (SD) results prove the effectiveness of the methodology for improving the balance of power delivery.
Go to article

Abstract

The loss of power and voltage can affect distribution networks that have a significant number of distributed power resources and electric vehicles. The present study focuses on a hybrid method to model multi-objective coordination optimisation problems for dis- tributed power generation and charging and discharging of electric vehicles in a distribution system. An improved simulated annealing based particle swarm optimisation (SAPSO) algorithm is employed to solve the proposed multi-objective optimisation problem with two objective functions including the minimal power loss index and minimal voltage deviation index. The proposed method is simulated on IEEE 33-node distribution systems and IEEE-118 nodes large scale distribution systems to demonstrate the performance and effectiveness of the technique. The simulation results indicate that the power loss and node voltage deviation are significantly reduced via the coordination optimisation of the power of distributed generations and charging and discharging power of electric vehicles.With the methodology supposed in this paper, thousands of EVs can be accessed to the distribution network in a slow charging mode.
Go to article

Abstract

In order to develop a PM BLDC motor control system, which will be tolerant of selected faults, simulation work was first performed and then verified on a universal test stand. The results were published in earlier works. The next stage of works was the implementation of previously developed algorithms on the target research test stand – in this case, the prototype vehicle. This last stage of the laboratory work has been presented in this article, i.e. it has been presented the results of experimental research related to the reproduction of rotor angle position, used after the detection of a rotor position sensor fault. A new test stand with the laboratory prototype of a vehicle with two PM BLDC motors is presented. A zeroth-order algorithm (ZOA) was used as a fault compensation method. The effectiveness and usefulness of the previously proposed methods have been confirmed.
Go to article

This page uses 'cookies'. Learn more