Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The study proposed the model of “guide mark” defects formation on the internal surface of pipes, produced on PRM mills of PRP – 140. The research of pipe forming at plug rolling mill with stub mandrel has been carried out; regularities of the dimensionless parameters characterizing the deformation of the gap release, depending on the reduction ratio, were determined. The model of “guide mark” defect formation on the internal surface of the pipe has been proposed. This allows for lesser wall thickness variation of rough tubes. It has been shown that, when using dioctahedral pass designs in comparison with hexagonal pass designs the proportion of displaced volume along the pipe axis is greater but the value is lower; thereby, the risk of “guide mark” defect forming is reduced.
Go to article

Abstract

This research work is devoted to the theoretical study of the pipe calibration on a mandrel. The aim of the study is to improve the precision of the calibrated pipes. As the paper shows, it is advisable to apply different methods of research depending on the purpose of the study of metal forming processes: mathematical, computer or physical simulation. Analytical review of existing mathematical models of the pipes calibration on a mandrel showed that the set of assumptions adopted in the mathematical modeling does not allow assessing the precision of the pipes during calibration. Therefore, finite-element method simulation package was used for this research. Research method and pipes precision index were developed on the basis of the computer simulation using Deform-3D package. The investigations have allowed us to get the dependence of the pipe precision on technological factors and to identify the root cause of reduced efficiency calibration – extrafocal deformation.
Go to article

Abstract

The paper addresses the issues of quantification and understanding of Solid Oxide Fuel Cells (SOFC) based on numerical modelling carried out under four European, EU, research projects from the 7FP within the Fuel Cell and Hydrogen Joint Undertaking, FCH JU, activities. It is a short review of the main projects’ achievements. The goal was to develop numerical analyses at a single cell and stack level. This information was integrated into a system model that was capable of predicting fuel cell phenomena and their effect on the system behaviour. Numerical results were analysed and favourably compared to experimental results obtained from the project partners. At the single SOFC level, a static model of the SOFC cell was developed to calculate output voltage and current density as functions of fuel utilisation, operational pressure and temperature. At the stack level, by improving fuel cell configuration inside the stack and optimising the operation conditions, thermal stresses were decreased and the lifetime of fuel cell systems increased. At the system level, different layouts have been evaluated at the steady-state and by dynamic simulations. Results showed that increasing the operation temperature and pressure improves the overall performance, while changes of the inlet gas compositions improve fuel cell performance.
Go to article

This page uses 'cookies'. Learn more