Aim: The aim of this study was to analyze the effect of bovine follicular fluid on the survival, morphology and kinetic parameters of bovine thawed spermatozoa under laboratory conditions. Materials and methods: The semen from 5 bulls of proven fertility was incubated in follicular and physiological fluid for 8 hours. During this time assessment using the CASA system was performed. At the beginning and the end of incubation process evaluation by flow cytometry was conducted. Results: The results of the sperm motility assessment showed a significant decrease in the analyzed parameters both in the follicular and physiological fluid. A significant reduction in all parameters characterizing movement properties in the semen incubated in the follicular fluid was found. In the physiological fluid, a similar trend was demonstrated only for the following proper- ties: VAP, VSL, VCL, ALH, BCF. A significant difference was found for both fluids in: VCL (p=0.026), ALH (p=0.038) and LIN (p<0.001) at the beginning of incubation. The results of the plasma membrane integrity assessment showed a statistically significant increase in the percent- age of dying sperm at the 8th hour of the incubation in the follicular fluid. In the case of semen incubation in physiological fluid, a statistically significant decrease in the percentage of live non-damaged cells was found with a simultaneous increase in the subpopulation of undamaged dead cells. Conclusions: Follicular fluid rapidly accelerates the capacitation process. The results of flow cytometry support the hypothesis concerning the ability of follicular fluid to prolong sperm sur- vival.
The aim of this paper is to study the applicability of the theory of micropolar ﬂuids to modelling and calculating ﬂows in microchannels depending on the geometrical dimension of the ﬂow ﬁeld. First, it will be shown that if the characteristic linear dimension of the ﬂow becomes appropriately large, the equations describing the micropolar ﬂuid ﬂow can be transformed into Navier-Stokes equations. Next, Poiseuille ﬂows in a microchannel is studied in detail. In particular, the maximal cross-sectional size of the channel for which the micropolar eﬀects of the ﬂuid ﬂow become important will be established. The experimentally determined values of rheological constants of the ﬂuid have been used in calculations.
This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD) software was used to simulate indoor air distribution. The analysis and comparison of the simulation results suggested that increasing the area of air supply outlets and the number of return air inlets would not only increase the area of unidirectional flow region in main flow region, but also avoid an indoor vortex and turbulivity of the operating area. Based on the summary of heat and humidity management methods, the system operation mode and relevant parameter technologies as well as the characteristics of the thermal-humidity load of the operating room were analyzed and compiled. According to the load value and parameters of indoor design obtained after our calculations, the airflow distribution of purifying the air-conditioning system in a clean operating room was designed and checked. The research results suggested that the application of a secondary return air system in the summer could reduce energy consumption and be consistent with the concept of primary humidity control. This study analyzed the feasibility and energy conservation properties of cleaning air-conditioning technology in operating rooms, proposed some solutions to the problem, and performed a feasible simulation, which provides a reference for practical engineering.
Biocomposite foam scaffolds of poly(ε-caprolactone) (PCL) with different porogenes were produced with batch foaming technique using supercritical carbon dioxide (scCO2) as a blowing agent. In performed experiments composites were prepared from graphene-oxide (nGO), nano-hydroxyapatite (nHA) and nano-cellulose (nC), with various concentrations. The objective of the study was to explore the effects of porogen concentration and foaming process parameters on the morphology and mechanical properties of three-dimensional porous structures that can be used as temporary scaffolds in tissue engineering. The structures were manufactured using scCO2 as a blowing agent, at two various foaming pressures (9 MPa and 18 MPa), at three different temperatures (323 K, 343 K and 373 K) for different saturation times (0.5 h, 1 h and 4 h). In order to examine the utility of porogenes, a number of tests, such as static compression tests, thermal analysis and scanning electron microscopy, have been performed. Analysis of experimental results showed that the investigated materials demonstrated high mechanical strength and a wide range of pore sizes. The obtained results suggest that PCL porous structures are useful as biodegradable and biocompatible scaffolds for tissue engineering.
The instability characteristics of a dielectric fluid layer heated from below under the influence of a uniform vertical alternating current (AC) electric field is analyzed for different types of electric potential (constant electric potential/ electric current), velocity (rigid/free) and temperature boundary conditions (constant temperature/heat flux or a mixed condition at the upper boundary). The resulting eigenvalue problem is solved numerically using the shooting method for various boundary conditions and the solution is also found in a simple closed form when the perturbation heat flux is zero at the boundaries. The possibility of a more precise control of electrothermal convection (ETC) through various boundary conditions is emphasized. The effect of increasing AC electric Rayleigh number is to hasten while that of Biot number is to delay the onset of ETC. The system is more stable for rigid-rigid boundaries when compared to rigid-free and least stable for free-free boundaries. The change of electric potential boundary condition at the upper boundary from constant electric potential to constant electric current is found to instill more stability on the system. Besides, increase in the AC electric Rayleigh number and the Biot number is to reduce the size of convection cells.
This paper presents results of investigations on the application of CuO-water nanofluids for intensification of convective heat transfer. Performance of nanofluids with 2.2 and 4.0 vol.% CuO NPs (nanoparticles) content were examined with regard to heat transfer coefficient and pressure losses in case of turbulent flow in a tube. Negligible impact of examined nanofluid on heat transfer improvement was found. Moreover, measured pressure losses significantly exceeded those determined for primary base liquid. The observations showed that application of nanofluid for heat transfer intensification with a relatively high solid load in the examined flow range is rather controversial.
The process of cognitive aging in global sense can be characterised by changes of the fluid and crystallised intelligence. In the context of this explanation the basic question is which cognitive functions and regulatory mechanisms play the basic role of the determinants for cognitive aging. Probable, mechanism of associative memory play a central role in top-down direction of cognitive processing. This type of memory connect the resources/networks of long term memory with the current processing in working memory. Another set of mechanisms concerns with bottom-up direction based on procedural memory, which is fundamental for the functioning of the mind as whole (Tulving theory,1985). Unfortunately, our knowledge about associative memory and its relations to working and procedural memory is incomplete and unclear. The importance of associative memory are partly, empirically supported by classic research on decreasing the cognitive components of intelligence aging, since the fluid and crystallized intelligence where discovered (Horn, Cattell, 1967). Changes of the mind functioning and its cognitive growth/aging can be characterised as a complex chain from primary, biologically determined mind, through Piagetian and Vygotsky’s type of mind to relatively balanced mind.
This paper presents an analysis of use of ultrasonic standing wave in cell separation from bodily fluids based on the example of erythrocyte separation from plasma. It describes movement of red blood cells in plasma under the influence of the acoustic field (whose forces result from interaction of red blood cells with plasma as the vibrating medium) and under the influence of resistance forces in Stokes’ and Oseen’s approximation. The general properties of solutions of the motion equation are given. The solutions for the parameters of the ultrasonic wave and blood cells which are interesting in terms of practical applications in medical diagnostics are discussed. Time constants of the cell transportation to the regions of stable equilibrium in the field of ultrasonic standing wave are estimated. The formulas which determine the time needed to obtain the assumed concentration increase in plasma in nodes and/or anti-nodes of the standing wave are derived.
Eye fluids (aqueous humour and vitreous humour) may be helpful in estimating ante-mortem blood levels, since some parameters measured in these fluids have proved to be stable or to change in a predictable way after death. This would help in diagnosing the cause of death in some diseases or to evaluate ante-mortem blood levels in certain animals not easy to handle or with difficult access. In order to establish reference values of some parameters in blood and eye fluids (aqueous humour and vitreous humour), as well as the possible correlation among these three different fluids, various minerals and electrolytes (Ca, P, Mg, K, Na, Fe, Cr, Co, Ni, Cu, Zn, Se and Mo) were measured in 15 four to five year-old Lidia bulls, all dying after a period of significant stress and major exertion. Plasmatic values of Mg and P were much greater than reported in the literature. In general, mineral plasmatic values were greater than those found in ocular fluids (aqueous and vitreous), while Na, K and Cr were similar in the three fluids. We have verified the existence of correlations in P, Co and Mo among the three fluids measured, and between Se of plasma and vitreous humour. But the most marked correlations were observed in Mo (plasma -aqueous humour, r = 0.893, plasma-vitreous humour, r = 0.945, HA -HV, r = 0.849), in P (plasma-vitreous humour, r = 0.726) and in Co (plasma-vitreous humour, r = 879).
The paper illustrates a case study of fluid selection for an internal combustion engine heat recovery organic Rankine cycle (ORC) system having the net power of about 30 kW. Various criteria of fluid selection are discussed. Particular attention is paid to thermodynamic performance of the system and human safety. The selection of working fluid for the ORC system has a large impact on the next steps of the design process, i.e., the working substance affects the turbine design and the size and type of heat exchangers. The final choice is usually a compromise between thermodynamic performance, safety and impact on natural environment. The most important parameters in thermodynamic analysis include calculations of net generated power and ORC cycle efficiency. Some level of toxicity and flammability can be accepted only if the leakages are very low. The fluid thermal stability level has to be taken into account too. The economy is a key aspect from the commercial point of view and that includes not only the fluid cost but also other costs which are the consequence of particular fluid selection. The paper discusses various configurations of the ORC system – with and without a regenerator and with direct or indirect evaporation. The selected working fluids for the considered particular power plant include toluene, DMC (dimethyl carbonate) and MM (hexamethyldisiloxane). Their advantages and disadvantages are outlined.
In the paper there are presented tools for structural modelling of throttle diagrams that are developed as a basis to building transducers used for measuring fluid parameters. The definitions of throttle diagrams are improved and their classification is developed. Dependences are obtained to calculate the number of measuring channels in a throttle diagram and the number of possible variants of measuring transducers using the combinatory apparatus. A procedure for mathematical description of throttle diagrams in the form of graphs is proposed which makes it possible to obtain all diagrams with different measuring channels on the basis of certain throttle diagram. The model is developed in the form of a graph. A schematic diagram and a mathematical model of a transducer measuring physical and mechanical parameters of Bingham plastic fluid are developed based on a throttle diagram.
Plate fin-tube heat exchangers fins are bonded with tubes by means of brazing or by mechanical expansion of tubes. Various errors made in the process of expansion can result in formation of an air gap between tube and fin. A number of numerical simulations was carried out for symmetric section of plate fin-tube heat exchanger to study the influence of air gap on heat transfer in forced convection conditions. Different locations of air gap spanning 1/2 circumference of the tube were considered, relatively to air flow direction. Inlet velocities were a variable parameter in the simulations (1– 5 m/s). Velocity and temperature fields for cases with air gap were compared with cases without it (ideal thermal contact). For the case of gap in the back of the tube (in recirculation zone) the lowest reduction (relatively to the case without gap) of heat transfer rate was obtained (average of 11%). The worst performance was obtained for the gap in the front (reduction relatively to full thermal contact in the average of 16%).
The flow of a viscous incompressible fluid in small gaps hydraulic devices and devices based on the hop boundary changes in viscosity. For the distribution model adopted dynamic viscosity was integrate the equations of fluid motion, whereby expressions are obtained for the velocity of the liquid height of the gap. The expressions for calculation of the fall capacity flow section are determined. Examples of the calculation of distributions velocity and falling bandwidth to a narrow gap are given.The estimation of the limits of applicability of classical approach to the calculation of viscous flow in micro gap is executed.
The aim of this study was to compare effect of combinations of intravenous isotonic sodium bicarbonate (NaHCO3), acetate Ringer, lactate Ringer and small-volume hypertonic sodium chloride (NaCI) solutions along with oral electrolyte solutions (OES) on the treatment of neonatal calf diarrhea with moderate dehydration and metabolic acidosis. Thirty-two calves with diarrhea were used in the study. Calves were randomly assigned to receive acetate Ringer solution (n=8), lactate Ringer solution (n=8), isotonic NaHCO3 (n=8) and 7.2% saline solutions (n=8), and two liters of OES were administrated to all calves orally at the end of intravenous administration. Blood samples for blood gas and biochemical analyses were collected at 0 hours and at 0.5, 1, 2, 4, 6 and 24 hours intervals. All the calves had mild to moderate metabolic acidosis on admission. Increased plasma volume and sodium concentration, but decreased serum total protein were observed within 0.5 hours following administration of hypertonic 7.2% NaCI + OES, compared to other 3 groups. In conclusion, administration of intravenous hypertonic 7.2% NaCI solution in small volume along with OES provided fast and effective improvement of dehydration and acid-base abnormalities within short time in treatment of calf diarrhea with moderate dehydration and metabolic acidosis.
The aim of the project was to collect experimental data regarding local distributions of fluid velocity and inert tracer concentration in a tank reactor with turbulent flow. The experiments were performed in a microscale in a region of tracer fluid injection. The results of experiments can be used for direct validation of currently developed CFD models, particularly for time-dependent mixing models used in LES.
In this study, the process of membrane cleaning by supercritical fluid extraction was investigated. Polypropylene microfiltration membranes, contaminated with oils, were treated in a batch process with a supercritical fluid (SCF). As extractant, pure supercritical carbon dioxide or supercritical carbon dioxide with admixtures of methanol, ethanol and isopropanol were used. Single-stage and multi-stage extraction was carried out and process efficiency was determined. The obtained results showed that addition of organic solvents significantly enhances the cleaning performance, which increases with increase of organic solvent concentration and decreases with increasing temperature. All three solvents showed a comparable effect of efficiency enhancement. The results confirmed that supercritical fluid extraction can be applied for polypropylene membrane cleaning.
Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
The paper presents a literature review on the topic of vapour power plants working according to the two-phase thermodynamic cycle with supercritical parameters. The main attention was focused on a review of articles and papers on the vapour power plants working using organic circulation fluids powered with low- and medium-temperature heat sources. Power plants with water-steam cycle supplied with a high-temperature sources have also been shown, however, it has been done mainly to show fundamental differences in the efficiency of the power plant and applications of organic and water-steam cycles. Based on a review of available literature references a comparative analysis of the parameters generated by power plants was conducted, depending on the working fluid used, the type and parameters of the heat source, with particular attention to the needs of power plant internal load.
This paper presents the analysis of momentum, angular momentum and heat transfer during unsteady natural convection in micropolar nanofluids. Selected nanofluids treated as single phase fluids contain small particles with diameter size 10-38.4 nm. In particular three water-based nanofluids were analyzed. Volume fraction of these solutions was 6%. The first of the analyzed nanofluids contained TiO2nanoparticles, the second one contained Al2O3nanoparticles, and the third one the Cu nanoparticles.
The optimization of finned tube heat exchanger is presented focusing on different fluid velocities and the consideration of aerodynamic configuration of the fin. It is reasonable to expect an influence of fin profile on the fluid streamline direction. In the cross-flow heat exchanger, the air streams are not heated and cooled evenly. The fin and tube geometry affects the flow direction and influences temperature changes. The heat transfer conditions are modified by changing the distribution of fluid mass flow. The fin profile impact also depends on the air velocity value. Three-dimensional models are developed to find heat transfer characteristics between a finned tube and the air for different air velocities and fin shapes. Mass flow weighted average temperatures of air volume flow rate are calculated in the outlet section and compared for different fin/tube shapes in order to optimize heat transfer between the fin material and air during the air flow in the cross flow heat exchanger.
In the paper a research on cost-effective optimum design boiling temperature for Organic Rankine Cycle utilizing low-temperature heat sources is presented. The ratio of the heat exchanger area of the boiler to the power output is used as the objective function. Analytical relations for heat transfer area as well power of the cycle are formulated. Evaporation temperature and inlet temperature of the heat source medium as well its mass flow rate are varied in the optimization method. The optimization is carried out for three working fluids, i.e. R 134a, water and ethanol. The objective function (economics profitability, thermodynamic efficiency) leads to different optimal working conditions in terms of evaporating temperature. Maximum power generation in the near-critical conditions of subcritical ORC is the highest. The choice of the working fluid can greatly affect the objective function which is a measure of power plant cost. Ethanol exhibits a minimum objective function but not necessarily the maximum cycle efficiency.
The joined wing concept is an unconventional airplane configuration, known since the mid-twenties of the last century. It has several possible advantages, like reduction of the induced drag and weight due to the closed wing concept. The inverted joined wing variant is its rarely considered version, with the front wing being situated above the aft wing. The following paper presents a performance prediction of the recently optimized configuration of this airplane. Flight characteristics obtained numerically were compared with the performance of two classical configuration airplanes of similar category. Their computational fluid dynamics (CFD) models were created basing on available documentation, photographs and some inverse engineering methods. The analysis included simulations performed for a scale of 3-meter wingspan inverted joined wing demonstrator and also for real-scale manned airplanes. Therefore, the results of CFD calculations allowed us to assess the competitiveness of the presented concept, as compared to the most technologically advanced airplanes designed and manufactured to date. At the end of the paper, the areas where the inverted joined wing is better than conventional airplane were predicted and new research possibilities were described.
In this study, the vibration analysis of fully and partially treated laminated composite Magnetorheological (MR) fluid sandwich plates has been investigated experimentally. The natural frequencies of fully and partially treated laminated composite MR fluid sandwich plates have been measured at various magnetic field intensities under two different boundary conditions. The variations of natural frequencies with applied magnetic field, boundary conditions and location ofMRfluid pocket have been explored. Further, a comparison of natural frequencies of fully and partially treated MR fluid sandwich structure has been made at various magnetic field intensities.
In this work we investigate the present capabilities of computational fluid dynamics for wall boiling. The computational model used combines the Euler/Euler two-phase flow description with heat flux partitioning. This kind of modeling was previously applied to boiling water under high pressure conditions relevant to nuclear power systems. Similar conditions in terms of the relevant non-dimensional numbers have been realized in the DEBORA tests using dichlorodifluoromethane (R12) as the working fluid. This facilitated measurements of radial profiles for gas volume fraction, gas velocity, bubble size and liquid temperature as well as axial profiles of wall temperature. After reviewing the theoretical and experimental basis of correlations used in the ANSYS CFX model used for the calculations, we give a careful assessment of the necessary recalibrations to describe the DEBORA tests. The basic CFX model is validated by a detailed comparison to the experimental data for two selected test cases. Simulations with a single set of calibrated parameters are found to give reasonable quantitative agreement with the data for several tests within a certain range of conditions and reproduce the observed tendencies correctly. Several model refinements are then presented each of which is designed to improve one of the remaining deviations between simulation and measurements. Specifically we consider a homogeneous MUSIG model for the bubble size, modified bubble forces, a wall function for turbulent boiling flow and a partial slip boundary condition for the liquid phase. Finally, needs for further model developments are identified and promising directions discussed.
The aim of the present work is to verify a numerical implementation of a binary fluid, heat conduction dominated solidification model with a novel semi-analytical solution to the heat diffusion equation. The semi-analytical solution put forward by Chakaraborty and Dutta (2002) is extended by taking into account variable in the mushy region solid/liquid mixture heat conduction coefficient. Subsequently, the range in which the extended semi-analytical solution can be used to verify numerical solutions is investigated and determined. It has been found that linearization introduced to analytically integrate the heat diffusion equation impairs its ability to predict solidus and liquidus line positions whenever the magnitude of latent heat of fusion exceeds a certain value.