Search results

Filters

  • Journals
  • Date

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

This paper presents a comparison of the blending efficiency of eight high-speed rotary impellers in a fully baffled cylindrical vessel under the turbulent flow regime of agitated charge. Results of carried out experiments (blending time and impeller power input) confirm that the down pumping axial flow impellers exhibit better blending efficiency than the high-speed rotary impellers with prevailing radial discharge flow. It follows from presented results that, especially for large scale industrial realisations, the axial flow impellers with profiled blades bring maximum energy savings in comparison with the standard impellers with inclined flat blades (pitched blade impellers).
Go to article

Abstract

This paper presents an analysis of the blending characteristics of axial flow high-speed impellers under a turbulent regime of flow of an agitated low viscosity liquid. The conductivity method is used to determine the time course of blending (homogenisation) of miscible liquids in a pilot plant fully baffled mixing vessel, and a torquemeter is used for measuring the impeller power input in the same system. Four-blade and six-blade pitched blade impellers and three high efficiency axial flow impellers are tested for the given degree of homogeneity (98%). The experimental results and also the results of the authors' previous study, in accordance with the theoretical approach described in the literature, show that there is a universal relationship between the impeller power number and the dimensionless blending time, taking into consideration the impeller-to-vessel diameter ratio, independent of the geometry of the axial flow impeller but dependent on the degree of homogeneity. This relationship is found to be valid on a pilot plant scale under a turbulent flow regime of an agitated liquid.
Go to article

Abstract

This paper extends knowledge about flow in an agitated batch with pitched blade multi-stage impellers. Effects of various geometrical parameters (blade number, distance between impellers) of pitched blade multi-stage impellers on pumping ability have been investigated. Axial velocity profiles were measured by LDA (Laser Doppler Anemometry). Axial pumping capacities were obtained by integration of measured axial velocity profiles in outflow from impellers. Main attention was focused on the effect of the distance between impellers in multi-stage configurations, on their pumping capacity and flow in the mixing bath in comparison with an independently operating pitched blade impeller with the same geometry. In case of a relatively close distance between impellers H3/d = 0.5 - 0.75, the multi-stage impeller creates only one circulation loop and the impellers itself behave identically as pumps in series. However for relative higher distance of impellers than H3/d = 1.25, the multi-stage impeller creates two separated circulation loops.
Go to article

Abstract

This paper deals with the effect of impeller shape on off-bottom particle suspension. On the basis of numerous suspension measurements, correlations are proposed for calculating the just-suspended impeller speed for a standard pitched four-blade turbine and three types of hydrofoil impellers produced by TECHMIX for several particle sizes and for a wide range of particle concentrations. The suspension efficiency of the tested impellers is compared with the efficiency of a standard pitched blade turbine on the basis of the power consumption required for off-bottom suspension of solid particles. It is shown that the standard pitched blade turbine needs highest power consumption, i.e. it exhibits less efficiency for particle suspension than hydrofoil impellers produced by TECHMIX.
Go to article

Abstract

Results of velocity measurements of liquid and gas bubbles in a tank with a self-aspirating disk impeller are analysed. Studies were carried out using a fluorescent dye tracer in the measuring system with two cameras (simultaneous phase velocity measurement) and with one camera (sequential measurement of phase velocity). Based on a comparative analysis of the acquired data it was found that when differences in the phase velocities were small the simultaneous velocity measurement gave good results. However, sequential measurement gives greater possibilities for setting the measuring system and if the analysis of instantaneous velocities is not necessary, it seems to be a better solution.
Go to article

Abstract

The paper describes research and development of aluminium melt refining technology in a ladle with rotating impeller and breakwaters using numerical modelling of a finite volume/element method. The theoretical aspects of refining technology are outlined. The design of the numerical model is described and discussed. The differences between real process conditions and numerical model limitations are mentioned. Based on the hypothesis and the results of numerical modelling, the most appropriate setting of the numerical model is recommended. Also, the possibilities of monitoring of degassing are explained. The results of numerical modelling allow to improve the refining technology of metal melts and to control the final quality under different boundary conditions, such as rotating speed, shape and position of rotating impeller, breakwaters and intensity of inert gas blowing through the impeller.
Go to article

Abstract

The present work deals with agitation of non-Newtonian fluids in a stirred vessel by Scaba impellers. A commercial CFD package (CFX 12.0) was used to solve the 3D hydrodynamics and to characterise at every point flow patterns especially in the region swept by the impeller. A shear thinning fluid with yield stress was modelled. The influence of agitator speed, impeller location and blade size on the fluid flow and power consumption was investigated. The results obtained are compared with available experimental data and a good agreement is observed. It was found that an increase in blade size is beneficial to enlargement of the well stirred region, but that results in an increased power consumption. A short distance between the impeller and the tank walls limits the flow around the agitator and yields higher power consumption. Thus, the precise middle of the tank is the most appropriate position for this kind of impeller.
Go to article

Abstract

This paper presents a numerical analysis of an agitated fully baffled cylindrical vessel with a down pumping four blade worn or unworn pitched blade impeller (α = 45° and 30°) under a turbulent flow regime. CFD simulations predict the pumping capacity of the system equipped by worn and unworn pitched blade impeller. Experimental data were taken from the authors’ previous work and compared with results of numerical computations. A good agreement with experimental data was obtained. The ensemble-average mean velocity field with worn and unworn impellers was computed. It follows from the simulation results that the wear rate of the impeller blade has a significantly negative effect on the velocity distribution in an agitated liquid. The greater the destruction of the worn blade, the higher is the deformation of the velocity field around the rotating impeller, with a simultaneous decrease in impeller pumping capacity.
Go to article

Abstract

This paper deals with the possibilities of using physical modelling to study the degassing of metal melt during its treatment in the refining ladle. The method of inert gas blowing, so-called refining gas, presents the most common operational technology for the elimination of impurities from molten metal, e.g. for decreasing or removing the hydrogen content from liquid aluminium. This refining process presents the system of gas-liquid and its efficiency depends on the creation of fine bubbles with a high interphase surface, uniform distribution, long period of its effect in the melt, and mostly on the uniform arrangement of bubbles into the whole volume of the refining ladle. Physical modelling represents the basic method of modelling and it makes it possible to obtain information about the course of refining processes. On the basis of obtained results, it is possible to predict the behaviour of the real system during different changes in the process. The experimental part focuses on the evaluation of methodical laboratory experiments aimed at the proposal and testing of the developed methods of degassing during physical modelling. The results obtained on the basis of laboratory experiments realized on the specific physical model were discussed.
Go to article

Abstract

A comparative analysis concerning the influence of different factors on momentum transfer in mechanically agitated systems was carried out on the basis of experimental results for solid-liquid, gas-liquid and gas-solid-liquid systems. The effects of the impeller - baffles system geometry, scale of the agitated vessel, type and number of impellers and their off-bottom clearance, as well as physical properties of the multiphase systems on the critical impeller speeds needed to produce suspension or dispersion, power consumption and gas hold-up were analysed and evaluated.
Go to article

Abstract

Feasibility of a model of gas bubble break-up and coalescence in an air-lift column enabling determination of bubble size distributions in a mixer with a self-aspirating impeller has been attempted in this paper. According to velocity measurements made by the PIV method with a self-aspirating impeller and Smagorinski’s model, the spatial distribution of turbulent energy dissipation rate close to the impeller was determined. This allowed to positively verify the dependence of gas bubble velocity used in the model, in relation to turbulent energy dissipation rate. Furthermore, the range of the eddy sizes capable of breaking up the gas bubbles was determined. The verified model was found to be greatly useful, but because of the simplifying assumptions some discrepancies of experimental and model results were observed.
Go to article

This page uses 'cookies'. Learn more