Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

Analysis of the use of the Russian materials (liquid glass and softening additives) has been made in accordance with the modern requirements for use in the technological processes of casting as binding materials in the production of large-sized steel railway casting. The reasons for poor knockout of liquid glass mixtures have been investigated. A complex action softening additive has been recommended for a better knocking-out ability. This solution provides a softening effect at the points of maximum formation of the liquid glass matrix strength in the processes of polymorphic transformation of the material under the influence of elevated temperatures as the result of filling the mold cavity by the melt. It has been shown that the use of additives of complex action leads to the decrease in the specific work of the knockout by four – seven times depending on the composition of the mixture and the design features of the casting. Experimental-industrial tests of the proposed method for softening the liquid glass mixtures have been made and the "Front Buffer Stop" casting has been made (for the rolling stock of locomotives and railway wagons). The tests confirmed the effectiveness and expediency of implementation of new liquid glass mixtures with softening additives in conditions of foundry enterprises.
Go to article

Abstract

In this work, the authors proposed a modification of the working space one-strand tundish adapted for slab casting process. Numerical simulations of liquid steel flow in the considered flow reactor were performed. The tundish is equipped with a dam with a multi-hole filter. Two variants of the filter hole arrangement were tested and their effect on the liquid steel flow hydrodynamic structure in the tundish was examined. The computer calculations results were verified by performing experiments on the water model. The result of numerical and physical simulations an RTD (Residence Time Distribution) type F curve was generated, which define the transition zone between the cast steel grades during the sequential casting process. The results of the researches showed that the modification of a dam with a multi-hole filter affects on the formation of the liquid steel flow hydrodynamic structure and the transition zone. Furthermore, examinations of the liquid steel refining ability in the considered tundish were carried out. The influence of the filter holes arrangement on the non-metallic inclusions flotation process to the slag phase and liquid steel filtration processes was checked. Numerical simulations were performed in the Ansys-Fluent computer program.
Go to article

Abstract

The main purpose of the present work was to validate the numerical model for the pulse-step liquid steel alloying method using a physical simulator that enables the observation and recording of phenomena occurring during the continuous steel casting process. The facility under investigation was a single-nozzle tundish equipped with a dam. To physical trials the glass water model was made on a scale of 2:5. For the mathematical description of turbulence during liquid steel alloying process, the k-ε and k-ω models were employed in the simulations. Based on the computer simulations and physical trials carried out, alloy addition behaviour and mixing curves for different tundish alloy addition feeding positions were obtained. The change in the location of alloy addition feeding to the liquid steel had an effect on the process of alloy addition spread in the liquid steel bulk and on the mixing time.
Go to article

This page uses 'cookies'. Learn more