Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:

Abstract

The research on the coupling electromagnetic effect was studied in this paper, in consideration of the wreaking damage of the powerful electromagnetic pulse to the electronic products. The characteristic of the metallic via and stub interconnect with the coupling voltage was calculated by the model, which was the transfer function F( f ) of the protection circuit parameters of DC power source. The research showed that: the smaller radius of Metallic via, the lower amplitude of F( f ), the less energy of a power electro- magnetic pulse (PEP); the higher increase of the width of the stub interconnect, the bigger reduction of the characteristic impedance of plane wave coupling, the depth of the notch band significantly narrowed. The simulations and experiments were done to compare the protection effects of protection circuits with different parameters at last. The results showed that the protection circuit designed could be highly advantageous in protecting the DC power source in this article.
Go to article

Abstract

Concentration of Zn, Cu, Cd, Pb and Co have been determined in Antarctic water (South Shetland Islands) and in krill exoskeletons with the help of atomic absorption spectrophotometry. Concentrations of these metals both in sea-water and in krill exoskeleton are in order Zn > Cu > Cd > Ni > Pb > Co. Comparing concentrations of these metals in sea-water to their concentrations in krill exoskeleton, the factors have been calculated giving a list of metals in the order of krill chitin ability, which is Ni > Cu > Zn > Cd > Pb > Co accumulation. The highest accumulation factors for Ni and Cu point out to the special role played by these metals in krill life.
Go to article

Abstract

Among the elements that compose steel slags and blast furnace slags, metallic precipitates occur alongside the dominant glass and crystalline phases. Their main component is metallic iron, the content of which varies from about 90% to 99% in steel slags, while in blast furnace slags the presence of precipitates was identified with the proportion of metallic iron amounting to 100%. During observations using scanning electron microscopy and X-ray spectral microanalysis it has been found that the form of occurrence of metallic precipitates is varied. There were fine drops of metal among them, surrounded by glass, larger, single precipitates in a regular, spherical shape, and metallic aggregates filling the open spaces between the crystalline phases. Tests carried out for: slags resulting from the open-hearth process, slags that are a by-product of smelting in electric arc furnaces, blast furnace slags and waste resulting from the production of ductile cast iron showed that depending on the type of slag, the proportion and form of metallic precipitates is variable and the amount of Fe in the precipitates is also varied. Research shows that in terms of quality, steel and blast furnace slag can be a potential source of iron recovery. However, further quantitative analyses are required regarding the percentage of precipitates in the composition of slags in order to determine the viability of iron recovery. This paper is the first part of a series of publications aimed at understanding the functional properties of steel and blast furnace slags in the aspect of their destructive impact on the components of devices involved in the process of their processing, which is a significant operational problem.
Go to article

Abstract

The contents of copper, manganese, zinc, lead and cadmium have been determined in plants of the Spitsbergen tundra, collected at Calypsostranda, Lyellstranda and Chamberlindalen in 1987. Five species of vascular plants, four species of mosses and fourteen species of lichens have been investigated. Manganese content in all the studied plants falls in the physiological limits of this element. Appreciable concentrations of copper, and zinc exceeding the physiological concentrations of these elements and presence of lead and cadmium have been shown for many plants.
Go to article

Abstract

Metal contents in the tundra soils (Gelic Regosols, Gelic Gleysols, Gelic Cambisols) of the maritime lowland of Kaffiöyra, in the western Spitsbergen seashore are presented in this publication. The average heave metal contents in samples collected from the depth layer 0—130 cm are follows: Fe 2.9%, Mn 392 ppm, Zn 75 ppm, Cu 23.4 ppm, Ni 24.1 ppm, Co 7.4 ppm, Pb 12.5 ppm, Cd 0.24 ppm. The surface soil layer 0 to 25 cm is poorer in Ca and Mg than the underlying layer 25 to 130 cm. The heave metal contents like Fe, Mn, Ni and Co, are also somewhat lower in the upper layer. The enrichment indices of Pb and Cd are equal in the surface soil layer 1.16 and 1.23 respectively. Correlation coefficients between each studied element and organic carbon, and, on the other hand, soil separates < 20 μm and < 2 μm are very low.
Go to article

Abstract

The results of studies on the air pollution and on the natural sedimentation from the atmosphere in the South Shetlands are (Admiralty Bay) are presented. The amount of dust in the air varied from 0.11 to 10.90 μg x m-3 (the mean being 3.70 μg x m-3). The total amount of substances transported from the atmosphere in the Admiralty Bay region was estimated at 12.7t x km-2 per year, whereas the precipitation transports some 2.5 t x km-2 per year in this region. Preliminary data on the contents of Cu. Cd. Co. Ni. Pb and Zn in the samples of surface waters, snow and rain in the region of the Admiralty Bay are presented and compared with the results of the authors.
Go to article

Abstract

In the years 1987-1995 studies were carried out on the content of Cu, Mn, Zn, Pb and Cd in plants and soil in the Bellsund area, Western Spitsbergen. For the studies the author used predominating species of vascular plants, bryophytes and lichens collected from beaches littoral planes, valleys, slopes and mountain peaks. Some plant species, largely bryophytes and lichens, were shown to contain increased amounts of Zn, Pb and Cd, whilst in others Cu deficiency was found. This paper is summing up studies concerning the content of Cu, Mn, Zn, Pb and Cd in plants of Western Spitsbergen, which were conducted over many years.
Go to article

Abstract

Distribution of the following elements: Na, K, Ca and Mg, and heavy metals: Fe, Mn, Zn, Cu, Ni, Co, Pb and Cd was analysed in the Gelic Cambisols profile from Kaffiöyra, Spitsbergen. The leaching of Ca, Fe, Mn, Co and Cu, and in a less degree Mg and Ni downward the profiles occurs in the studied soil due to pedogenic processes. The surface soil horizon is strongly enriched in Na and K of marine origin and Pb and Cd from anthropogenic pollution of the distant atmospheric transports.
Go to article

Abstract

The analysis of leaching behavior of harmful substances, such as arsenic, is one of the parameters of risk assessment resulting from the storage or economic use of coal waste. The leachability depends both on the environmental conditions of the storage area as well as on the properties of the waste material itself. There are a number of leaching tests that allow to model specific conditions or measure the specific properties of the leaching process. The conducted research aimed at comparing two methods with different application assumptions. The study of arsenic leaching from waste from the hard coal enrichment process was carried out in accordance with the Polish PN-EN 12457 standard and the US TCLP procedure. The leaching results obtained with both methods did not exceed the limit values of this parameter, defined in the Polish law. Both methods were also characterized by the good repeatability of the results. The use of an acetic acid solution (TCLP method) resulted in three times higher arsenic leaching from the examined waste compared to the use of deionized water as a leaching fluid (method PN-EN 12457). Therefore, the use of organic acid tests for mining waste intended for storage with municipal waste should be considered, as the results of the basic test based on clean water leaching may be inadequate to the actual leaching of arsenic under such environmental conditions.
Go to article

Abstract

The mathematical model and numerical simulations of the solidification of a cylindrical shaped casting, which take into account the process of filling the mould cavity by liquid metal and feeding the casting through the riser during its solidification, are presented in the paper. Mutual dependence of thermal and flow phenomena were taken into account because have an essential influence on solidification process. The effect of the riser shape on the effectiveness of feeding of the solidifying casting was determined. In order to obtain the casting without shrinkage defects, an appropriate selection of riser shape was made, which is important for foundry practice. Numerical calculations of the solidification process of system consisting of the casting and the conical or cylindrical riser were carried out. The velocity fields have been obtained from the solution of momentum equations and continuity equation, while temperature fields from solving the equation of heat conductivity containing the convection term. Changes in thermo-physical parameters as a function of temperature were considered. The finite element method (FEM) was used to solve the problem.
Go to article

Abstract

The article presents current methods used for the recovery of metals from used electronic equipment. The analysis of the composition and structure of the material was made on the example of one of the most popular and widespread e-waste – used cell phones. The article was address the problems of processing and separation of individual components included in these heterogeneous wastes. The main purpose of the conducted research was to prepare the tested material in such a way that the recovery of metals in the further stages of its processing was as effective as possible.The results of attempts to separate individual material fractions with magnetic, pyrometallurgical or hydrometallurgical methods will be presented. An analysis of the possibilities of managing electronic waste in terms of the circular economy will be made.
Go to article

Abstract

The problem of the migration of metal ions in the environment remains a current problem in light of the quality of obtained crops. The necessity of more and more frequent use of alternative sources of biogens in the form of waste substances, poses a threat of loading significant amounts of metals into the soil – including heavy metals harmful to human health and life. The article discusses a significant problem, namely the comparison of the results of the environmental impact of waste, obtained on the basis of legally authorized leaching tests (three-stage leaching test according to PN-EN 12457:2006), with results obtained from sequential chemical extraction (performed in 4-step chemical extraction developed and recommended in European Union countries by Communities Bureau of References – BCR). The study covered an investigation of industry fly ash from the combustion of lignite, in which Cu, Zn, Cd, Ni, Pb, Cr, Na, K, Li concentrations and loads were calculated. A mobility of analyzed elements was established on this basis. From heavy metals, the highest values in fraction I were noted for nickel and copper and zinc as well as nickel were noted for fraction IV . Peaking values of electrolytic conductivity in eluates was created by high concentrations of macroelements (Na and K). These tests confirm that the leaching tests used for their application in the natural environment indicate such concentrations at the highest levels that can be obtained at the first or second stage of sequential chemical extraction, and thus their proper full environmental impact is not known.
Go to article

Abstract

Ultrasonic processing in the cavitation mode is used to produce the composite materials based on the metal matrix and reinforcing particles of micro- and nano-sizes. In such a case, the deagglomeration of aggregates and the uniform distribution of particles are the expected effects. Although the particles can not only fragment in the acoustic field, they also can coagulate, coarsen and precipitate. In this paper, a theoretical study of processes of deagglomeration and coagulation of particles in the liquid metal under ultrasonic treatment is made. The influence of various parameters of ultrasound and dispersion medium on the dynamics of particles in the acoustic field is considered on the basis of the proposed mathematical model. The criterion of leading process (coagulation or deagglomeration) has been proposed. The calculated results are compared with the experimental ones known from the scientific literature.
Go to article

Abstract

Basing on experimental data, the possibility of consolidating side products of turning, milling and drilling of aluminum alloys into the form and properties of solids metals using low-temperature KoBo extrusion method has been assessed. Research regarding mechanical and structural properties of the final products revealed their total consolidation and proved their compatibility with requirements for products made of bulk billets. Importantly, the chips consolidation process does not require high or even raised temperature, which significantly reduces the unfavorable phenomenon of chips oxidation and its negative influence on the structure and mechanical properties of products. A very good effect of chips compaction has been proved by KoBo method, which has been confirmed by relatively slightly different mechanical properties of the material after recycling compared with the bulk one. Among currently applied techniques of consolidation of dispersed fractions in a solid state (leaving the melting stage out), the KoBo method seems an innovative way of utilizing metallic chips, as it enables a cold deformation process. The paper presents investigations using 2024 and 7075 aluminum alloys chips from manufacturing process, formed into briquettes and deformed under conditions of KoBo extrusion process, which enables to obtain long product by cold forming. The final product characterized by good microstructures, mechanical features and low cost of production.
Go to article

Abstract

In the last 20 years, a new meshless computational method has been developed that is called peridynamics. The method is based on the parallelized code. The subject of the study is the deformation of open-cell copper foams under dynamic compression. The computational model of virtual cellular material is considered. The skeleton structure of such a virtual cellular material can be rescaled according to requirements. The material of the skeleton is assumed as the oxygen free high conductivity (OFHC) copper. The OFHC copper powder can be applied in additive manufacturing to produce the open-cell multifunctional structures, e.g., crush resistant heat exchangers, heat capacitors, etc. In considered peridynamic computations the foam skeleton is described with the use of an elastic-plastic model with isotropic hardening. The dynamic process of compression and crushing with different impact velocities is simulated.
Go to article

Abstract

Wider application of silicon carbide (SiC) is anticipated for increasing the durability of various structural facilities. For this study, SiC was fabricated with decreased electrical resistivity for precision electrical discharge machining. Two-step reaction sintering by infiltration of molten Fe-Si alloy was applied for SiC fabrication. The procedure included first sintering at 973 K in Ar gas atmosphere and second sintering by spontaneous infiltration of molten Fe-75%Si alloy at 1693 K in vacuum. The sintered structure porosity became very low, forming 3C-type SiC. Results confirmed that molten Fe-75%Si alloy infiltration occurred because of reaction sintering. The electrical resistivity of the sintered SiC infiltrated by molten Fe-75%Si alloy can be improved to be two orders of magnitude lower than that by molten Si, consequently maintaining the high performance of SiC.
Go to article

This page uses 'cookies'. Learn more