Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

The paper addresses optimal control problem of mobile manipulators. Dynamic equations of those mechanisms are assumed herein to be uncertain. Moreover, unbounded disturbances act on the mobile manipulator whose end-effector tracks a desired (reference) trajectory given in a task (Cartesian) space. A computationally efficient class of two-stage cascaded (hierarchical) control algorithms based on both the transpose Jacobian matrix and transpose actuation matrix, has been proposed. The offered control laws involve two kinds of non-singular terminal sliding mode (TSM) manifolds, which were also introduced in the paper. The proposed class of cooperating sub-controllers is shown to be finite time stable by fulfilment of practically reasonable assumptions. The performance of the proposed control strategies is illustrated on an exemplary mobile manipulator whose end-effector tracks desired trajectory.
Go to article

Abstract

Main topic of the paper is a problem of designing the input-output decoupling controllers for nonholonomic mobile manipulators. We propose a selection of output functions in much more general form than in [1,2]. Regularity conditions guaranteeing the existence of the input-output decoupling control law are presented. Theoretical considerations are illustrated with simulations for mobile manipulator consisting of RTR robotic arm mounted atop of a unicycle which moves in 3D-space.
Go to article

This page uses 'cookies'. Learn more