Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:

Abstract

In spite of the fact that standardizing operations and increased awareness of hazards led to a significant improvement of vibroacoustic climate of operator’s stands of new machines, their long-term operation - often under difficult conditions - leads to a fast degradation of acoustic qualities of machines. Temporary operations performed during surveys and periodical overhauls are rarely effective, due to the lack of any guidelines. In this situation the authors propose the algorithm for selection of eventual screens or sound absorbing and sound insulating partitions, utilizing the measuring procedure aimed at identification, at the operator’s stand, of main noise components originated from various sources. On the basis of this procedure, the vibroacoustic energy propagation paths in the machine was estimated.
Go to article

Abstract

The main objective of the research presented in this paper is to enhance driver-passengers comfort of a vehicle that in turn leads to better vehicle safety and stability. The focus was put on studying the interior vibration and noise contributions originated from tire-road and engine-transmission subsystems, due to their significant impact on the dynamic performance of the vehicle. The noise and vibration measurements were recorded at the driver’s head position and on the driver legs room. Furthermore, the influence of different tire types and road surface textures on the vehicle interior noise and vibration were considered. The results indicate that the widely used conventional engine mounts and tires in commercial vehicles cannot fulfill the conflicting requirements for the best isolation concerning both road surface and engine-transmission induced excitations. The values of driver’s head position sound pressure level and floor vibration acceleration broadband averages originate for engine-transmission are lower than that for tire-road interaction. Furthermore, the values of RMS, crest factor, kurtosis and IRI for the vehicle waveform were estimated for vehicle speeds, tire types and road surface textures. Moreover, the percentage contribution for both interior noise and vibration originated from tire-road interaction is higher than the one from vehicle engine-transmission system in all the vehicle speed range, tire type and road surface texture considered.
Go to article

This page uses 'cookies'. Learn more