Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 40
items per page: 25 50 75
Sort by:

Abstract

This paper presents the analysis of the influence of works related to the dynamic replacement column formation on the bridge pillar and the highway embankment located nearby. Thanks to DR columns, it is possible to strengthen the soil under road embankment in a very efficient way. However, the construction of such support carries risk to buildings and engineering structures located in the neighbourhood. Therefore modelling and monitoring of the influence of the conducted works should be an indispensable element of each investment in which dynamic replacement method is applied. The presented issue is illustrated by the example of soil strengthening with DR columns constructed under road embankment of DTŚ highway located in Gliwice. During the inspection, the influence of vibrations on the nearby bridge pillar and road embankment was examined. The acceleration values obtained during these tests were used to verify the elaborated numerical model.
Go to article

Abstract

Exploitation of hard coal seams by roadway system is applied by two coal mines in southern Poland in Upper Silesian Basin. It is a secondary mining exploitation carries out in safety pillars of urban areas and shafts within mining areas of closed coal mines. Roadway system is the excavation process of gateways which are made in parallel order leaving coal pillars between them. An optimal width of coal pillar makes roadway stable and reduces subsidence of terrain surface. The article presents results of subsidence simulation caused by partial extraction using empirical and numerical methods on the example of one exploitation field of “Siltech” coal mine. The asymptotic state of subsidence was considered after mining ceased in the study area. In order to simulate of subsidence, numerical model of rock mass and model of Knothe-Budryk theory were calibrated. Simulation of vertical displacements in numerical method was carried out using RS3 program by Rocscience based on finite element method. The assumption was made that model of rock mass is transversely isotropic medium, in which panels were designed according to order of extraction of coal seams. The results of empirical and numerical methods were compared with measured values of subsidence at benchmarks along drawn lines (subsidence profiles).
Go to article

Abstract

The stability of gateroads is one of the key factors for the mining process of hard coal by a longwall system. Wrong designed and applied the gateroad support at the stage of drilling, may adversely affect the functionality of the gateroad and the safety of the crew throughout its existence. The article presents the results of the underground tests and observations such as: convergence of the gateroad, stratification and the fractured zone range in the roof rocks, carried out in four longwall gateroads at the stage of their drilling. The obtained test results were the basis for the assessment of the possibility of using a convergence control method in the design of the gateroad support. The method is based on three interdependent relationships, such as: Ground Reaction Curve (GRC), Longitudinal Displacement Profile (LDP), and a Support Characteristic Curve (SCC). All calculations were performed using numerical modeling in the Phase2 program, based on the finite element method (FEM).
Go to article

Abstract

This paper presents a complex study of anhydrite interbeds influence on the cavern stability in the Mechelinki salt deposit. The impact of interbeds on the cavern shape and the stress concentrations were also considered. The stability analysis was based on the 3D numerical modelling. Numerical simulations were performed with use of the Finite Difference Method (FDM) and the FLAC3D v. 6.00 software. The numerical model in a cuboidal shape and the following dimensions: length 1400, width 1400, height 1400 m, comprised the part of the Mechelinki salt deposit. Three (K-6, K-8, K-9) caverns were projected inside this model. The mesh of the numerical model contained about 15 million tetrahedral elements. The occurrence of anhydrite interbeds within the rock salt beds had contributed to the reduction in a diameter and irregular shape of the analysed caverns. The results of the 3D numerical modelling had indicated that the contact area between the rock salt beds and the anhydrite interbeds is likely to the occurrence of displacements. Irregularities in a shape of the analysed caverns are prone to the stress concentration. However, the stability of the analysed caverns are not expected to be affected in the assumed operation conditions and time period (9.5 years).
Go to article

Abstract

To this day, most of the papers related to hybrid joints were focused on single and double lap joints in which shear deformation and degradation was the dominant phenomenon. However, in real constructions, complex state of loads can be created by: a) torsion with shear, b) bending with shear, c) torsion with tensile. Analytical and numerical computation for simple mechanical joints is known, however, the introduction of an adhesive layer to this joint makes the load transferred both through: (1) the adhesive and (2) mechanical fasteners. There is also an interaction between the amount and stiffness of mechanical fasteners and the strength of the adhesive layer. The paper presents the results of numerical calculations for the bending with shear type of load for the hybrid structural joint and corresponding simple joints by: (1) pure adhesion and (2) rivets with different quantity maintaining the same cross-sectional area. A total of 9 simulations were performed for: (1) 4 types of pure rivets connections, (2) pure adhesive joint and (3) 4 kinds of hybrid joints. The surface-based cohesive behavior was used for creation of the adhesive layer, whereas the rivets were modelled by connector type fasteners, which simplify complexity of the numerical model. The use of connectors allowed for effort assessment taking into account damage in both types of connections. Application of connector elements can be useful for larger structures modelling, e.g. aircraft fuselage, where the number of mechanical joints is significant and complex load conditions occur.
Go to article

Abstract

The behaviour of porous sinters, during compression and compression with reverse cyclic torsion tests is investigated in the article based on the combination of experimental and numerical techniques. The sinters manufactured from the Distaloy AB powder are examined. First, series of simple uniaxial compression tests were performed on samples with three different porosity volume fractions: 15, 20 and 25%. Obtained data were then used during identification procedure of the Gurson-Tvergaard-Needleman finite element based model, which can capture influence of porosity evolution on plasticity. Finally, the identified Gurson-Tvergaard- Needleman model was validated under complex compression with reverse cyclic torsion conditions and proved its good predictive capabilities. Details on both experimental and numerical investigations are presented within the paper.
Go to article

Abstract

The paper has presented the results of theoretical studies and experimental tests of the plastic deformation of multi-layered Ti/Al/Mg specimens. Theoretical studies were carried out using the Forge2011® computer program. Physical modeling, on the other hand, was performed using the Gleeble3800 simulator. Cuboidal specimens were cut off from the plates obtained in the explosive welding method. Based on the obtained investigation results it has been found non uniform deformation of the particular layer as a result their different value of flow stress.
Go to article

Abstract

This article describes stability issues of main excavations in deep copper mines in Poland, from the perspective of mining work safety. To protect main transportation and ventilation routes, parts of rock are left untaken to form so-called protective pillars. The problem was to determine the size of main excavations protective pillars in deep underground copper mines in which provide stability of main excavations. The results of numerical simulations of the stability of protective pillars under specific geological and mining conditions are presented, covering: underground depth and width of protective pillar, number, size and layout geometry of protected excavations, as well as the impact of parameters of surrounding gob areas. Problem was solved applying numerical simulations based on the finite element method which were performed in a plane state of strain by means of Phase2 v. 8.0 software. The behavior of the rock mass under load was described by an elastic-plastic model. The Mohr-Coulomb criterion was used to assess the stability of the rock mass. The results of numerical modeling have practical applications in the designing of protective pillars primarily in determining their width. These results were used to prepare new guidelines for protective pillars in Polish copper mines in the Legnica-Glogow Copper District.
Go to article

Abstract

The cohesion and internal friction angle were characterized as quadratic functions of strain and were assumed to follow the Mohr-Coulomb criterion after the yield of peak strength. These mechanical parameters and their variations in post-peak softening stage can be exactly ascertained through the simultaneous solution based on the data points of stress-strain curves of triaxial compression tests. Taking the influence of the fault into account, the variation of strata pressure and roadway convergence with coal advancement, the temporal and spatial distribution of axial bolt load were numerically simulated by FLAC3D (Fast Lagrangian Analysis of Continua) using the ascertained post-peak mechanical parameters according to the cohesion weakening and friction strengthening model. The change mechanism of axial load of single rock bolt as abutment pressure changes was analyzed, through the comparison analysis with the results of axial bolt load by field measurements at a coal mine face. The research results show that the simulated results such as the period of main roof weighting, temporal and spatial distribution of axial bolt load are in accordance with field measurement results, so the validity of the numerical model is testified. In front of the working face, the front abutment pressure increases first and then decreases, finally tends to be stable. A corresponding correlation exists between the variation of axial bolt load and rock deformation along the bolt body. When encountered by a fault, the maximum abutment pressure, the influential range of mining disturbance and the roadway convergence between roof and floor before the working face are all increased. In the roadways along the gob, axial bolt loads on the side of the working face decrease, while the other side one increases after the collapse of the roof. As superficial surrounding rock mass is damaged, the anchoring force of rock bolts will transfer to inner rock mass for balancing the tensile load of the bolts.
Go to article

Abstract

The present paper reports the results of theoretical and experimental studies of the process of die forging a bimetallic door handle intended for the production of a helicopter. The aim of the studies was to develop and implement a technology for die forging of a product with a specific mass similar to that of magnesium alloys which will have, however higher corrosion resistance. Numerical modelling and industrial tests were carried out based on the previously forging processes for an AZ31 alloy door handle. The material for the tests was a bimetallic bar produced by the explosive welding method, in which the core was of alloy AZ31, and the cladding layer was made of 1050A grade aluminium. The studies were conducted for two variants: Variant I – the forging process was mapped by numerical modelling and industrial tests for the die shape and parameters used in the forging of the AZ31 alloy door handle, Variant II – the tool shape was optimized and process parameters were selected so as to obtain a finished product characterized by a continuous Al layer. From the theoretical studies and experimental tests carried out it has been found that the application of the Variant I does not assure that a finished door handle characterized by a continuous cladding layer will be produced. Within this study, a novel method of bimetallic door handle die forging (Variant II) has been developed, which limits the amount of the flash formed and assures the integrity of the cladding layer.
Go to article

Abstract

The article presents an analysis of the multi-operation hot die forging process, performed on a press, of producing a lever forging used in the motorcycles of a renowned producer by means of numerical simulations. The investigations were carried out in order to improve (perfect) the currently applied production technology, mainly due to the presence of forging defects during the industrial production process. The defects result mainly from the complicated shape of the forging (bent main axis, deep and thin protrusions, high surface diversity in the cross section along the length of the detail), which, during the filling of the die by the deformed material, causes the presence of laps, wraps and underfills on the forging. Through the determination of the key parameters/quantities during the forging process, which are difficult to establish directly during the industrial process or experimentally, a detailed and complex analysis was performed with the use of FEM as well as through microstructure examinations. The results of the performed numerical modelling made it possible to determine: the manner of the material flow and the correctness of the impression filling, as well as the distributions of temperature fields and plastic deformations in the forging, and also to detect the forging defects often observed in the industrial process. On this basis, changes into the process were introduced, making it possible to improve the currently realized technology and obtain forgings of the proper quality as well as shape and dimensions.
Go to article

Abstract

In the last 20 years, a new meshless computational method has been developed that is called peridynamics. The method is based on the parallelized code. The subject of the study is the deformation of open-cell copper foams under dynamic compression. The computational model of virtual cellular material is considered. The skeleton structure of such a virtual cellular material can be rescaled according to requirements. The material of the skeleton is assumed as the oxygen free high conductivity (OFHC) copper. The OFHC copper powder can be applied in additive manufacturing to produce the open-cell multifunctional structures, e.g., crush resistant heat exchangers, heat capacitors, etc. In considered peridynamic computations the foam skeleton is described with the use of an elastic-plastic model with isotropic hardening. The dynamic process of compression and crushing with different impact velocities is simulated.
Go to article

Abstract

The paper presents a numerical model of the novel design of the axial magnetic bearing with six cylindrical poles. The motivation behind this idea was to eliminate vibrations in rotating machinery due to the axial load. Common conception of such a bearing provides a single component of the electromagnetic force, which is not enough to reduce transverse and lateral vibrations of the armature. The proposed design allows for avoiding wobbling of the disc with the use of a few axial force components that are able to actively compensate the axial load and stabilise the disc in a balanced position. Before a real device is manufactured, a virtual prototype should be prepared. The accurate numerical model will provide essential knowledge about the performance of the axial magnetic bearing.
Go to article

Abstract

Detailed studies of the movement of liquid steel (hydrodynamics) on a real object are practically impossible. The solution to this problem are physical modelling carried out on water models and numerical modelling using appropriate programs. The method of numerical modelling thanks to the considerable computing power of modern computers gives the possibility of solving very complex problems. The paper presents the results of model tests of liquid flow through tundish. The examined object was model of the twonozzle tundish model. The ANSYS Fluent program was used to describe the behavior of liquid in the working area of the tundish model. Numerical simulations were carried out using two numerical methods of turbulence description: RANS (Reynolds-Averaged Navier-Stokes) – model k-ε and LES (Large Eddy Simulation). The results obtained from CFD calculations were compared with the results obtained using the water model.
Go to article

Abstract

This paper presents possibilities for of numerical modelling of biomass combustion in a commercially available boiler. A sample of biomass was tested with respect to its physical and chemical properties. Thermogravimetry studies of biomass were carried out. Computer simulation makes it possible to analyse complex phenomena which are otherwise difficult to observe. The aim of this work was to model biomass combustion to predict the amount of pollutants generated (NOx, CO, SO2) in the exhaust gases coming out from boilers The calculations were made using the CHEMKIN program. Results of calculations were performed taking into account the influence of temperature, pressure and residence time.
Go to article

Abstract

A simple model of behaviour of a single particle on the bulging membrane was presented. As a result of numerical solution of a motion equation the influence of the amplitude and frequency of bulging as well as the particle size on particle behaviour, especially its downstream velocity was investigated. It was found that the bulging of a membrane may increase the mean velocity of a particle or reinforce its diffusive behaviour, dependeing on the permeation velocity. The obtained results may help to design new production methods of highly fouling-resistant membranes.
Go to article

Abstract

A numerical algorithm is presented for the filling process of a cylindrical column with equilateral cylinders. The process is based on simplified mechanics - the elements are added one by one until the mechanical equilibrium is reached. The final structure is examined with respect to the global and local porosity distribution. Oscillating radial porosity profile is obtained in accordance with experimental data.
Go to article

Abstract

The paper describes research and development of aluminium melt refining technology in a ladle with rotating impeller and breakwaters using numerical modelling of a finite volume/element method. The theoretical aspects of refining technology are outlined. The design of the numerical model is described and discussed. The differences between real process conditions and numerical model limitations are mentioned. Based on the hypothesis and the results of numerical modelling, the most appropriate setting of the numerical model is recommended. Also, the possibilities of monitoring of degassing are explained. The results of numerical modelling allow to improve the refining technology of metal melts and to control the final quality under different boundary conditions, such as rotating speed, shape and position of rotating impeller, breakwaters and intensity of inert gas blowing through the impeller.
Go to article

Abstract

The subject of the work is the analysis of thermomechanical bending process of a thin-walled tube made of X5CrNi18-10 stainless steel. The deformation is produced at elevated temperature generated with a laser beam in a specially designed experimental setup. The tube bending process consists of local heating of the tube by a moving laser beam and simultaneous kinematic enforcement of deformation with an actuator and a rotating bending arm. During experimental investigations, the resultant force of the actuator and temperature at the laser spot are recorded. In addition to experimental tests, the bending process of the tube was modelled using the finite element method in the ABAQUS program. For this purpose, the tube deformation process was divided into two sequentially coupled numerical simulations. The first one was the heat transfer analysis for a laser beam moving longitudinally over the tube surface. The second simulation described the process of mechanical bending with the time-varying temperature field obtained in the first simulation. The force and temperature recorded during experiments were used to verify the proposed numerical model. The final stress state and the deformation of the tube after the bending process were analyzed using the numerical solution. The results indicate that the proposed bending method can be successfully used in forming of the thin-walled profiles, in particular, when large bending angles and a small spring-back effect are of interest.
Go to article

Abstract

The presented results of investigations are part of a larger study focused on the optimization of the flow and mixing of liquid steel in the industrial tundish of continuous casting machine. The numerical simulations were carried out concern the analysis of hydrodynamic conditions of liquid steel flow in a tundish operating in one of the national steelworks. Numerical simulations were performed using the commercial code ANSYS Fluent. The research concerns two different speeds of steel casting. In real conditions, these speeds are the most commonly used in the technological process when casting two different groups of steel. As a result of computational fluid dynamics (CFD) calculations, predicted spatial distributions of velocity and liquid steel turbulence fields and residence time distribution (RTD) curves were obtained. The volume fractions of different flows occurring in the tundish were also calculated. The results of the research allowed a detailed analysis of the influence of casting speed on the formation of hydrodynamic conditions prevailing in the reactor.
Go to article

Abstract

The levitation melting has a potentially wide range of applications, especially in the processing of reactive metals whose contact with the crucible material causes their contamination and damage to the crucible itself. Despite its advantages, levitation melting, already proposed in the 1920s, has not yet found significant use in industrial conditions. This is due to the nature of the electromagnetic field used in previously developed devices. The disappearance of this field in the system axis causes overcoming, in the case of larger charges, surface tension forces and metal leakage from the device. The article contains a comparative analysis of a conventional solution and a newly developed levitation melting device, whose completely different design eliminates the previous weight limit of the charge.
Go to article

Abstract

The aim of the work was modelling of shaft and calculation of natural vibration frequencies and critical rotations of a large-size, vertical mixed flow pump of total length l=4866 mm. Equations of motion were determined analytically, and then calculation results were verified by numerical modelling. The difficulty of the problem consisted in the shaft bearing, in which four hydrodynamic bearings of unknown parameters were applied. A four-mass beam supported on flexible supports of rigidity k and damping c was assumed as the discrete model of the shaft. Equations of motion for the system were derived with the method of forces. In order to verify correctness of the derived equations, one considered three models of the beam with different support configuration: the beam supported on rigid supports, the beam supported on elastic supports, and the beam supported on flexible supports of rigidity k and damping c. Calculation results are presented in tables and graphs.
Go to article

Abstract

The modelling of colloidal fouling and defouling of hollow fibre membranes in the presence of membrane oscillations is analysed by means of numerical simulations as an effect of complex coupling between hydrodynamic and surface forces. To describe the latter the Derjaguin-Landau- Vervey-Overbeek (DLVO) model has been employed. We have investigated the influence of various parameters of the process like flow rate, mean particle diameter, amplitude and frequency of the oscillations, and others, on the efficiency of the defouling process. The investigated parameters is close to that of a silica suspension in , a typical system modelling used to investigate membrane separation. On the basis of numerical simulation results e have defined an optimal set of parameters preventing membrane fouling.
Go to article

Abstract

A process capable of NOx control by ozone injection gained wide attention as a possible alternative to proven post combustion technologies such as selective catalytic (and non-catalytic) reduction. The purpose of the work was to develop a numerical model of NO oxidation with O3 that would be capable of providing guidelines for process optimisation during different design stages. A Computational Fluid Dynamics code was used to simulate turbulent reacting flow. In order to reduce computation expense a 11-step global NO - O3 reaction mechanism was implemented into the code. Model performance was verified by the experiment in a tubular flow reactor for two injection nozzle configurations and for two O3/NO ratios of molar fluxe. The objective of this work was to estimate the applicability of a simplified homogeneous reaction mechanism in reactive turbulent flow simulation. Quantitative conformity was not completely satisfying for all examined cases, but the final effect of NO oxidation was predicted correctly at the reactor outlet.
Go to article

This page uses 'cookies'. Learn more