Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:

Abstract

A sediment core (LS-1) collected from Long Lake in King George Island, South Shetland Islands (West Antarctica) was analyzed for a variety of textural, geochemical, isotopic and paleontological properties together with 14C age dates. These data combined with published records of other studies provide a detailed history of local/regional postglacial paleoproductivity variation with respect to terrestrial paleoclimate change. The lithologic contrast of a lower diamicton and an upper fine-grained sediment demonstrates glacial recession and subsequent lake formation. The upper fine-grained deposit, intercalated by mid-Holocene tephra-fallout followed by a tephra gravity flow, was formed in a lacustrine environment. Low total organic carbon (TOC) and biogenic silica (Sibio) contents with high C/N ratios characterize the diamicton, whereas an increase of TOC and Sibio contents characterize the postglacial lacustrine fine-grained sediments, which are dated at c. 4000 yrBP. More notable are the distinct TOC maxima, which may imply enhanced primary productivity during warm periods. Changes in Sibio content and δ13C values, which support the increasing paleoproductivity, are in sympathy with these organic matter variations. The uniform and low TOC contents that are decoupled by Sibio contents are attributed to the tephra gravity flows during the evolution of the lake rather than a reduced paleoproductivity. A very recent TOC maximum is also characterized by high Sibio content and δ13C values, clearly indicating increased paleoproductivity consequent upon gradual warming across King George Island . Comparable with changes in sediment geochemistry, the occurrence and abundance of several diatom species corroborate the paleoproductivity variations together with the lithologic development. However, the paleoclimatic signature in local terrestrial lake environment during the postglacial period (for example the Long Lake) seems to be less distinct, as compared to the marine environment.
Go to article

Abstract

Water samples were collected at 12 oceanographic stations from six standard depths ranging from 0 to 100 and 150 m. The number of bacteria and concentration of organic components were expressed in adequate units per 1 litre of sea water and in the form of the integrated values for the whole water column under I m2 of sea of organic components were expressed in adequate units per 1 litre of sea water and in the form of the integrated values for the whole water column under 1 m2 of sea surface. Total numbers of bacteria (TC) ranged from 0.16 to 7.31 x 107/1 and 1.74 — 5.67 x 10, 2/m2 saprophytic bacteria (CFU) 0.10 — 46.85 x 103/1 and 0.62 — 27.7x 108/m2. contents of particulate organic carbon (РОС) 0.02 — 0.25 mg/1 and 3.5 — 20.0 g/m2 dissolved organic carbon (DOC) 0.07 — 3.02 mg/1 and 53.5 — 207.9 g/m2, dissolved free amino acids (DFAA) 0 — 1.8965 μmol/1 and 2.7 -151.5 mmol/m2, dissolved combined amino acids (DCAA) 0 2.9366 μmо1/1 and 16.5— 163.5 mmol/m2, particulate combined amino acids (PCAA) 0 — 3.0215 μmо1/1 and 3.7 — 249.0 mmol/m2. Total numbers of bacteria and РОС, DOC and DCAA concentrations, widely differentiated in the investigated area, were on the average much lower than the values obtaine in previous years. The saprophytic bacteria content and DFAA and PCAA concentrations were at a similar level to that in the past years. Higher TC and CFU values were observed in the areas with high concentrations of phytoioplankton to the NW of Anvers I. and around Clarence I.
Go to article

Abstract

51 samples from the Middle Triassic black shales (organic carbon−rich silt− stones; up to 4.9% TOC – Total Organic Carbon) from the stratotype section of the Bravaisberget Formation (western Spitsbergen) were analyzed with respect to isotopic composition of pyritic sulphur (34S) and TOC. Isotopic composition of syngenetic py− rite−bound sulphur shows wide (34S from −26‰ to +8‰ VCDT) and narrow (34S from −4‰ to +17‰ VCDT) variation of the 34S in upper and lower part of the section, respec− tively. Range of the variation is associated with abrupt changes in dominant lithology. Wide 34S variation is found in lithological intervals characterized by alternation of black shales and phosphorite−bearing sandstones. The narrow 34S variation is associated with the lithological interval dominated by black shales only. Wide and narrow variation of the #2;34S values suggests interplay of various factors in sedimentary environment. These fac− tors include oxygen concentration, clastic sedimentation rate, bottom currents and bur− rowing activity. Biological productivity and rate of dissimilatory sulphate reduction had important impact on the 34S variation as well. Wide variation of the 34S values in the studied section resulted from high biological productivity and high rate of dissimilatory sulphate reduction. Variable degree of clastic sedimentation rate and burrowing activity as well as the activity of poorly oxygenated bottom currents could also cause a co−occurrence of isotopically light and heavy pyrite in differentiated diagenetic micro−environments. Occurrence of organic matter depleted in hydrogen could also result in a wide variation of the 34S values. Narrow variation of the #2;34S values was due to a decrease of biological productivity and low rate of dissimilatory sulphate reduction. Low organic matter supply, low oxygen concentration and bottom currents and burrowing activity were also responsible for narrow variation of the 34S. The narrow range of the 34S variation was also due to occurrence of hydrogen−rich organic matter. In the studied section the major change in range of the 34S variation from wide to narrow appears to be abrupt and clearly associated with change in lithology. The change of lithology and isotopic valuesmay sug− gest evolution of the sedimentary environment from high− to low−energy and also facies succession from shallow to deeper shelf. The evolution should be linked with the Late Anisian regional transgressive pulse in the Boreal Ocean.
Go to article

Abstract

Experiments have been carried out on the influence exerted by Aroclor 1254 upon the photosynthetic production of organic 14C by an assemblage of marine Antarctic diatoms (Thalassiosira sp. 48%, Nitzschia sp. 21%, Chaetoceros sp. 15% and Corethron iriophilum 10%). Samples of various numbers of cells per cm3 of water have been used. Incorporation of 14C02 by the diatoms proved to be proportional to the increased number of cells in the sample only at the lowest levels of concentration in per cm3. Further increase of the level of 14C in diatoms has not been found as number of cells in the sample kept growing. Calculation of brutto photosynthesis has indicated that low concentration of Aroclor 1254 (0,01 to 1 ppm) may stimulate the photosynthetic incorporation of carbon, yet the photosynthetic release of carbon from cells within the photorespiratory process is stimulated to a higher degree. High concentration of Aroclor (1 to 50 ppm) inhibit the brutto assimilation, yet the release of carbon during the photorespiratory process is inhibited to a higher degree. A hypothesis is being considered implying that the relation between the intensity of photosynthesis and intensity of photorespiration may vary according to the rate of concentration of Aroclor.
Go to article

Abstract

Measurements were made of organic fluxes at a coastal sediment at Signy Island , South Orkney Islands, Antarctica , between December 1990 and March 1992. The deposition rate of organic matter to the sediment was measured at the same time with a maximum sedimentation rate of 306 mg C m–2 d–1. The rates of sedimentary organic input were small during winter ice cover, and the organic content of the sediment declined during this period as available organic matter was depleted. Fresh organic input occurred as soon as the sea-ice melted and ice algal biomass was deposited to the sediment; and was sustained during the spring after ice break-up by continued primary production in the water column. The proportion of available carbon in surface sediments was measured during a seasonal cycle using Pseudomonas aeruginosa as an indicator organism over the 0–1 cm depth horizon. Variations in the amount of organic matter deposited to the sediments and the proportion of available carbon were observed during the seasonal cycle. Seasonal variations of benthic activity in this coastal sediment was regulated by the input and availability of organic matter, and not by seasonal water temperature, which was relatively constant between –1.8 and 0.5°C .
Go to article

Abstract

The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM) after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.
Go to article

Abstract

Labile fractions of organic matter can rapidly respond to changes in soil and they have been suggested as sensitive indicators of soil organic matter. Two labile fractions of organic carbon in the soils amended with fresh municipal sewage sludge in two rates (equivalent of 60 kg P ha-1 and 120 kg P ha-1) were studied. Soils under studies were overgrown with Salix in Germany, Estonia and Poland. In Polish soils application of sewage sludge increased the content of both labile organic carbon fractions (KMnO4-C and HWC) for a period of one year. Estonian soils were stable and no distinct changes in labile organic carbon fractions occurred.
Go to article

Abstract

Organic carbon, nitrogen, and phosphorus in the soils of the High Arctic play an important role in the context of global warming, biodiversity, and richness of tundra vegetation. The main aim of the present study was to determine the content and spatial distribution of soil organic carbon (SOC), total nitrogen (N tot ), and total phosphorus (P tot ) in the surface horizons of Arctic soils obtained from the lower part of the Fuglebekken catchment in Spitsbergen as an example of a small non−glaciated catchment representing uplifted marine terraces of the Svalbard Archipelago. The obtained results indicate that surface soil horizons in the Fuglebekken catchment show considerable differences in content of SOC, N tot , and P tot . This mosaic is related to high variability of soil type, local hydrology, vegetation (type and quantity), and especially location of seabird nesting colony. The highest content of SOC, N tot , and P tot occurs in soil surface horizons obtained from sites fertilized by seabird guano and located along streams flowing from the direction of the seabird colony. The content of SOC, N tot , and P tot is strongly negatively correlated with distance from seabird colony indicating a strong influence of the birds on the fertility of the studied soils and indirectly on the accumulation of soil organic matter. The lowest content of SOC, N tot , and P tot occurs in soil surface horizons obtained from the lateral moraine of the Hansbreen glacier and from sites in the close vicinity of the lateral moraine. The content of N tot ,P tot , and SOC in soil surface horizons are strongly and positively correlated with one another, i.e. the higher the content of nutrients, the higher the content of SOC. The spatial distribution of SOC, N tot , and P tot in soils of the Hornsund area in SW Spitsbergen reflects the combined effects of severe climate conditions and periglacial processes. Seabirds play a crucial role in nutrient enrichment in these weakly developed soils.
Go to article

Abstract

In the Polish sector of the Magura Nappe have long been known and exploited carbonate mineral waters, saturated with carbon dioxide, known as the “shchava (szczawa)”. These waters occur mainly in the Krynica Subunit of the Magura Nappe, between the Dunajec and Poprad rivers, close to the Pieniny Klippen Belt (PKB). The origin of these waters is still not clear, this applies to both “volcanic” and “metamorphic” hypotheses. Bearing in mind the case found in the Szczawa tectonic window and our geological and geochemical studies we suggest that the origin of the carbon dioxide may be linked with the thermal/pressure alteration of organic matter of the Oligocene deposits from the Grybów Unit. These deposits, exposed in several tectonic windows of the Magura Nappe, are characterized by the presence of highly matured organic matter – the origin of the hydrocarbon accumulations. This is supported by the present-day state of organic geochemistry studies of the Carpathian oil and gas bed rocks. In our opinion origin of the carbon-dioxide was related to the southern, deep buried periphery of the Carpathian Oil and Gas Province. The present day distribution of the carbonated mineral water springs has been related to the post-orogenic uplift and erosion of the Outer (flysch) Carpathians.
Go to article

Abstract

The Passhatten Member (Anisian–Ladinian) is the most westward exposure of the Middle Triassic sedimentary sequence of Spitsbergen. The member has an average organic carbon of 2.21 wt %. The sediments were deposited in a shallow shelf environment under conditions of high biological productivity stimulated by a well−developed upwelling system and an enhanced nutrient supply from land areas. The high biological productivity caused a high supply of organic particles to the shelf bottom. Decomposition of organic matter initiated oxygen deficiency in the bottom waters; however, bottom water dynamics on the shallow shelf temporarily replenished the oxygen. Consequently, the Passhatten Mb section is bioturbated, even in thick black shale horizons and consists of alternately spaced lithological layers with variable organic carbon content. The organic matter is dominated by type II kerogen with a mixture of strongly altered marine and/or land derived organic matter. Calculated initial hydrogen index values suggest oil−prone organic matter similar to kerogen I and II types. The organic matter is in the upper intermediate stage of thermo−catalytic alteration, close to the cata− and metagenetic boundary. Maturity indicators including Rock−Eval, Maximum Temperature, Organic Matter Transformation Ratio, Residual Carbon content, as well as the volume of methane generated suggest mature to overmature organic matter. Methane potential retained in the black shales sequence is significant. Unexpelled gas is estimated at 395 mcf/ac−ft for the examined section.
Go to article

This page uses 'cookies'. Learn more