Search results

Filters

  • Journals
  • Date

Search results

Number of results: 6
items per page: 25 50 75
Sort by:

Abstract

In this study, we present a new method for obtaining the parameters of the Johnson-Mehl-Avrami-Kolmogorov equation for dynamic recrystallization grain size. The method consists of finite-element analysis and optimization techniques. An optimization tool iteratively minimizes the error between experimental values and corresponding finite-element solutions. Isothermal backward extrusion of the AA6060 aluminum alloy was used to acquire the main parameters of the equation for predicting DRX grain size. We compared grain sizes predicted using optimized and reference parameters with experimental values from the literature and found better agreement when the optimized parameters were applied.
Go to article

Abstract

The broad range applications of Ultra-Fine Grained metals is substantially limited by the lack of a welding method that allows them to be joined without losing the strong refinement of structure. From this point of view, the solid state welding processes are privileged. Friction welding tests were carried out on UFG 316L stainless steel. A joining process at high temperature activates the recrystallization, therefore the friction welding parameters were selected according to the criterion of the lowest degree of weakness due to recrystallization in the heat affected zone. In order to characterize the structure of basic material and selected areas of the obtained joint, were performed SEM, TEM and metallographic examinations in terms of hardness and range of softening of the material and tensile test. Despite the short time and relatively low welding temperature, results of the test by scanning electron microscopy and transmission electron microscopy confirmed the loss of the primary ultrafine structure in the Heat Affected Zone of welded joint.
Go to article

Abstract

The orientations of recrystallization nuclei and their adjacent as-deformed regions have been characterised in deformed single crystals of different metals (Ag, Cu, Cu-2%wt.Al and Cu-8%wt.Al) in which twinning and/or shear banding occur. {112}<111> oriented crystals of these metals have been compressed to different strains, then lightly annealed, and the crystallographic aspects of the recrystallization process along shear bands examined by local orientation measurement in TEM and SEM. The results clearly show the existence of a well-defined crystallographic relation between the local deformation substructure and the first recrystallized areas of uniform orientation. The first-formed nuclei always exhibit near 25–400(<111>–<112>) type misorientations, in the direction of highest growth, with respect to one of the two main groups of the deformation texture components. The rotation axes can be correlated with the slip plane normal of highest activity. As recrystallization proceeds, recrystallization twinning develops strongly and facilitates rapid growth; the first and higher generations of twins then tend to obscure the initial primary crystallographic relation between the shear bands and recrystallization nuclei .
Go to article

Abstract

Isothermal hot compression experiments were carried out using the Gleeble-1500D thermal mechanical simulator. The flow stress of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys was studied at hot deformation temperature of 550°C, 650°C, 750°C, 850°C, 900°C and the strain rate of 0.001 s–1, 0.01 s–1, 0.1 s–1, 1 s–1, 10 s–1. Hot deformation activation energy and constitutive equations for two kinds of alloys with and without yttrium addition were obtained by correlating the flow stress, strain rate and deformation temperature. The reasons for the change of hot deformation activation energy of the two alloys were analyzed. Dynamic recrystallization microstructure evolution for the two kinds of alloys during hot compression deformation was analyzed by optical and transmission electron microscopy. Cu-1%Zr and Cu-1%Zr-0.15%Y alloys exhibit similar behavior of hot compression deformation. Typical dynamic recovery occurs during the 550-750°C deformation temperature, while dynamic recrystallization (DRX) occurs during the 850-900°C deformation temperature. High Zr content and the addition of Y significantly improved Cu-1%Zr alloy hot deformation activation energy. Compared with hot deformation activation energy of pure copper, hot deformation activation energy of the Cu-1%Zr and Cu-1%Zr-0.15%Y alloys is increased by 54% and 81%, respectively. Compared with hot deformation activation energy of the Cu-1%Zr alloy, it increased by 18% with the addition of Y. The addition of yttrium refines grain, advances the dynamic recrystallization critical strain point and improves dynamic recrystallization.
Go to article

Abstract

In the current study, the hot deformation of medium carbon V-Ti micro-alloyed steel was surveyed in the temperature range of 950 to 1150°C and strain rate range of 0.001 to 1 s–1 after preheating up to 1200°C with a compression test. In all cases of hot deformation, dynamic recrystallization took place. The influence of strain rate and deformation temperature on flow stress was analyzed. An increase in the strain rate and decrease in the deformation temperature postponed the dynamic recrystallization and increased the flow stress. The material constants of micro-alloyed steel were calculated based on the constitutive equations and Zener-Hollomon parameters. The activation energy of hot deformation was determined to be 458.75 kJ/mol, which is higher than austenite lattice self-diffusion activation energy. To study the influence of precipitation on dynamic recrystallization, the stress relaxation test was carried out in a temperature range of 950 to 1150°C after preheating up to 1200°C. The results showed no a stress drop while representing the interaction of particles with dynamic recrystallization.
Go to article

This page uses 'cookies'. Learn more