Search results

Filters

  • Journals
  • Date

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The aim of the research was to assess the microbiological (number of heterotrophic bacteria, actinobacteria and moulds) and biochemical (urease and acid phosphatase activity) state of peat with the admixture of composts produced from sewage sludge. An additional aim of the research was to demonstrate the influence of those substrates on the morphological traits of scarlet sage (height, number and length of shoots, number of buds and inflorescences, greenness index (SPAD)). Composts produced from sewage sludge, wheat, maize and lupine straw were mixed with peat, where their percentage varied from 25% to 75%. The substrate which included the composts applied in the experiment had a higher number of heterotrophic bacteria and a higher acid phosphatase activity level than the control substrate (peat). The multiplication of moulds and actinobacteria was more intensive than in the peat only in the combinations with K3 (sewage sludge 50%+sawdust 20%+ lupine straw 30%) and K4 (sewage sludge 50%+sawdust 20%+fresh maize straw 30%) composts, whereas the highest urease activity level was observed in the soils produced from K1 (sewage sludge 50%+sawdust 20%+white straw 30%) compost. The most optimal development of plants was observed in the substrate with compost produced from wheat straw. Composts produced from municipal sewage sludge were found to be suitable for growing scarlet sage. However, their effect depends on the percentage of high peat in the substrate.
Go to article

Abstract

The aim of the study was verification of the response of chamomile (Matricaria recutita (L.) Rauschert), peppermint (Mentha x piperita) lemon balm (Melissa officinalis L.), and sage (Salvia officinalis L.) on the elevated contents of inorganic As species in soils. The ability of herbs to accumulate arsenic was tested in pot experiment in which soils were contaminated by As(III) and As(V). The As(III), As(V), AB (arsenobetaine), MMA (monomethylarsonic acid) and DMA (dimethylarsinic acid) ions were successfully separated in the Hamilton PRP-X100 column with high performance-liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) techniques. The study examined total arsenic contents in soil and plants, as well as the mobility of the arsenic species from the soil into the studied plants. Peppermint demonstrated the highest arsenic concentration and phytoaccumulation among studied plants. The sequential chemical extraction showed that arsenic in the contaminated soil was mainly related to the oxide and organic-sulfide fractions. The results showed that the oxidized arsenic form had a greater ability to accumulate in herbs and was more readily absorbed from the substrate by plants. Research has shown that soil contaminated with As(III) or As(V) has different effects on the arsenic content in plants. The plant responses to strong environmental pollution varied and depended on their type and the arsenic species with which the soil was contaminated. In most cases it resulted in the appearance of the organic arsenic derivatives.
Go to article

Abstract

Video walls are useful to display large size video content. Empowered video walls combine display functionality with computing power. Such video walls can display large scientific visualizations. If they can also display high-resolution video streamed over a network, they could enable distance collaboration over scientific data. We proposed several methods of network streaming of highresolution video content to a major type of empowered video walls, which is the SAGE2 system. For all methods, we evaluated their performance and discussed their scalability and properties. The results should be applicable to other web-based empowered video walls as well.
Go to article

This page uses 'cookies'. Learn more